These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 38761342)
21. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043 [TBL] [Abstract][Full Text] [Related]
22. Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases. Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell'Aversana F; Grassi F; Belli A; Silvestro L; Ottaiano A; Nasti G; Avallone A; Flammia F; Miele V; Tatangelo F; Izzo F; Petrillo A Radiol Med; 2022 Jul; 127(7):763-772. PubMed ID: 35653011 [TBL] [Abstract][Full Text] [Related]
23. CT radiomics models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases. Taghavi M; Staal FC; Simões R; Hong EK; Lambregts DM; van der Heide UA; Beets-Tan RG; Maas M Acta Radiol; 2023 Jan; 64(1):5-12. PubMed ID: 34918955 [TBL] [Abstract][Full Text] [Related]
24. A Comprehensive Machine Learning Benchmark Study for Radiomics-Based Survival Analysis of CT Imaging Data in Patients With Hepatic Metastases of CRC. Stüber AT; Coors S; Schachtner B; Weber T; Rügamer D; Bender A; Mittermeier A; Öcal O; Seidensticker M; Ricke J; Bischl B; Ingrisch M Invest Radiol; 2023 Dec; 58(12):874-881. PubMed ID: 37504498 [TBL] [Abstract][Full Text] [Related]
25. Independent validation of CT radiomics models in colorectal liver metastases: predicting local tumour progression after ablation. van der Reijd DJ; Guerendel C; Staal FCR; Busard MP; De Oliveira Taveira M; Klompenhouwer EG; Kuhlmann KFD; Moelker A; Verhoef C; Starmans MPA; Lambregts DMJ; Beets-Tan RGH; Benson S; Maas M Eur Radiol; 2024 Jun; 34(6):3635-3643. PubMed ID: 37987835 [TBL] [Abstract][Full Text] [Related]
26. Preoperative prediction of KRAS mutation status in colorectal cancer using a CT-based radiomics nomogram. Xue T; Peng H; Chen Q; Li M; Duan S; Feng F Br J Radiol; 2022 Jun; 95(1134):20211014. PubMed ID: 35312376 [TBL] [Abstract][Full Text] [Related]
27. Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning. Tharmaseelan H; Vellala AK; Hertel A; Tollens F; Rotkopf LT; Rink J; Woźnicki P; Ayx I; Bartling S; Nörenberg D; Schoenberg SO; Froelich MF Cancer Imaging; 2023 Oct; 23(1):95. PubMed ID: 37798797 [TBL] [Abstract][Full Text] [Related]
28. Prediction of preoperative microvascular invasion by dynamic radiomic analysis based on contrast-enhanced computed tomography. Zhou Z; Xia T; Zhang T; Du M; Zhong J; Huang Y; Xuan K; Xu G; Wan Z; Ju S; Xu J Abdom Radiol (NY); 2024 Feb; 49(2):611-624. PubMed ID: 38051358 [TBL] [Abstract][Full Text] [Related]
29. [Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma]. Yu YX; Hu CH; Wang XM; Fan YF; Hu MJ; Shi C; Hu S; Zhu M; Zhang Y Zhonghua Yi Xue Za Zhi; 2021 May; 101(17):1239-1245. PubMed ID: 34865392 [No Abstract] [Full Text] [Related]
30. Cystic renal mass screening: machine-learning-based radiomics on unenhanced computed tomography. Huang L; Ye Y; Chen J; Feng W; Peng S; Du X; Li X; Song Z; Liu T Diagn Interv Radiol; 2024 Jul; 30(4):236-247. PubMed ID: 38164893 [TBL] [Abstract][Full Text] [Related]
31. Deep-learning features based on F18 fluorodeoxyglucose positron emission tomography/computed tomography ( Wang H; Zhang J; Li Y; Wang D; Zhang T; Yang F; Li Y; Zhang Y; Yang L; Li P Clin Radiol; 2024 Sep; 79(9):e1152-e1158. PubMed ID: 38955636 [TBL] [Abstract][Full Text] [Related]
32. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255 [TBL] [Abstract][Full Text] [Related]
33. An innovative radiomics approach to predict response to chemotherapy of liver metastases based on CT images. Giannini V; Defeudis A; Rosati S; Cappello G; Mazzetti S; Panic J; Regge D; Balestra G Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1339-1342. PubMed ID: 33018236 [TBL] [Abstract][Full Text] [Related]
34. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study. Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793 [TBL] [Abstract][Full Text] [Related]
35. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Yang L; Dong D; Fang M; Zhu Y; Zang Y; Liu Z; Zhang H; Ying J; Zhao X; Tian J Eur Radiol; 2018 May; 28(5):2058-2067. PubMed ID: 29335867 [TBL] [Abstract][Full Text] [Related]
36. Prediction of femoral osteoporosis using machine-learning analysis with radiomics features and abdomen-pelvic CT: A retrospective single center preliminary study. Lim HK; Ha HI; Park SY; Han J PLoS One; 2021; 16(3):e0247330. PubMed ID: 33661911 [TBL] [Abstract][Full Text] [Related]
37. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening. Bülbül HM; Burakgazi G; Kesimal U; Kaba E Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559 [TBL] [Abstract][Full Text] [Related]
38. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on He J; Wang Q; Zhang Y; Wu H; Zhou Y; Zhao S Ann Nucl Med; 2021 May; 35(5):617-627. PubMed ID: 33738763 [TBL] [Abstract][Full Text] [Related]
39. Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image. Zhu L; Wang F; Chen X; Dong Q; Xia N; Chen J; Li Z; Zhu C BMC Med Imaging; 2023 Jul; 23(1):94. PubMed ID: 37460944 [TBL] [Abstract][Full Text] [Related]
40. Radiomics analysis of baseline computed tomography to predict oncological outcomes in patients treated for resectable colorectal cancer liver metastasis. Montagnon E; Cerny M; Hamilton V; Derennes T; Ilinca A; Elforaici MEA; Jabbour G; Rafie E; Wu A; Perdigon Romero F; Cadrin-Chênevert A; Kadoury S; Turcotte S; Tang A PLoS One; 2024; 19(9):e0307815. PubMed ID: 39259736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]