These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38761342)

  • 41. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.
    Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR
    Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359
    [No Abstract]   [Full Text] [Related]  

  • 42. Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types.
    Zhang Y; Zhang B; Liang F; Liang S; Zhang Y; Yan P; Ma C; Liu A; Guo F; Jiang C
    Eur Radiol; 2019 Apr; 29(4):2157-2165. PubMed ID: 30306329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics.
    Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L
    Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas.
    Kocak B; Durmaz ES; Kaya OK; Kilickesmez O
    Acta Radiol; 2020 Jun; 61(6):856-864. PubMed ID: 31635476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CT-based radiomics for the identification of colorectal cancer liver metastases sensitive to first-line irinotecan-based chemotherapy.
    Qi W; Yang J; Zheng L; Lu Y; Liu R; Ju Y; Niu T; Wang D
    Med Phys; 2023 May; 50(5):2705-2714. PubMed ID: 36841949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparing Radiomics features of tumour and healthy liver tissue in a limited CT dataset: A machine learning study.
    Lysdahlgaard S
    Radiography (Lond); 2022 Aug; 28(3):718-724. PubMed ID: 35428570
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of Hepatic Encephalopathy After Transjugular Intrahepatic Portosystemic Shunt Based on CT Radiomic Features of Visceral Adipose Tissue.
    Cheng S; Hu G; Jin Z; Wang Z; Xue H
    Acad Radiol; 2024 May; 31(5):1849-1861. PubMed ID: 38007366
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of 18F-FDG PET/CT imaging radiomics in the differential diagnosis of single-nodule pulmonary metastases and second primary lung cancer in patients with colorectal cancer.
    Yu Y; Zhu J; Sang S; Yang Y; Zhang B; Deng S
    J Cancer Res Ther; 2024 Apr; 20(2):599-607. PubMed ID: 38687930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of
    Haider SP; Zeevi T; Sharaf K; Gross M; Mahajan A; Kann BH; Judson BL; Prasad ML; Burtness B; Aboian M; Canis M; Reichel CA; Baumeister P; Payabvash S
    J Nucl Med; 2024 May; 65(5):803-809. PubMed ID: 38514087
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
    Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H
    Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics.
    Xiao DX; Zhong JP; Peng JD; Fan CG; Wang XC; Wen XL; Liao WW; Wang J; Yin XF
    BMC Med Imaging; 2023 Oct; 23(1):159. PubMed ID: 37845636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CT-based radiomics research for discriminating the risk stratification of pheochromocytoma using different machine learning models: a multi-center study.
    Zhao J; Zhan Y; Zhou Y; Yang Z; Xiong X; Ye Y; Yao B; Xu S; Peng Y; Xiao X; Zeng X; Zuo M; Dai X; Gong L
    Abdom Radiol (NY); 2024 May; 49(5):1569-1583. PubMed ID: 38587628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep Learning Radiomics Model of Contrast-Enhanced CT for Differentiating the Primary Source of Liver Metastases.
    Jia W; Li F; Cui Y; Wang Y; Dai Z; Yan Q; Liu X; Li Y; Chang H; Zeng Q
    Acad Radiol; 2024 Oct; 31(10):4057-4067. PubMed ID: 38702214
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A prediction model for degree of differentiation for resectable locally advanced esophageal squamous cell carcinoma based on CT images using radiomics and machine-learning.
    Kawahara D; Murakami Y; Tani S; Nagata Y
    Br J Radiol; 2021 Aug; 94(1124):20210525. PubMed ID: 34235955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development and Validation of a Radiomics Model for Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT.
    Hong JH; Jung JY; Jo A; Nam Y; Pak S; Lee SY; Park H; Lee SE; Kim S
    Radiology; 2021 Jun; 299(3):626-632. PubMed ID: 33787335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preoperative prediction of vessel invasion in locally advanced gastric cancer based on computed tomography radiomics and machine learning.
    Hu ZW; Liang P; Li ZL; Yong LL; Lu H; Wang R; Gao JB
    Oncol Lett; 2023 Jul; 26(1):293. PubMed ID: 37274479
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of inter-reader contouring variability on textural radiomics of colorectal liver metastases.
    Rizzetto F; Calderoni F; De Mattia C; Defeudis A; Giannini V; Mazzetti S; Vassallo L; Ghezzi S; Sartore-Bianchi A; Marsoni S; Siena S; Regge D; Torresin A; Vanzulli A
    Eur Radiol Exp; 2020 Nov; 4(1):62. PubMed ID: 33169295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy.
    Zou XC; Luo CW; Yuan RM; Jin MN; Zeng T; Chao HC
    Urolithiasis; 2024 Apr; 52(1):64. PubMed ID: 38613668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Radiomics analysis using contrast-enhanced CT for preoperative prediction of occult peritoneal metastasis in advanced gastric cancer.
    Liu S; He J; Liu S; Ji C; Guan W; Chen L; Guan Y; Yang X; Zhou Z
    Eur Radiol; 2020 Jan; 30(1):239-246. PubMed ID: 31385045
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of the differences in tumor mutation burden between primary and metastatic lesions by radiogenomics.
    Hoshino I; Yokota H; Iwatate Y; Mori Y; Kuwayama N; Ishige F; Itami M; Uno T; Nakamura Y; Tatsumi Y; Shimozato O; Nagase H
    Cancer Sci; 2022 Jan; 113(1):229-239. PubMed ID: 34689378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.