These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38761484)

  • 1. Ferrioxalate photolysis-assisted green recovery of valuable resources from spent lithium iron phosphate batteries.
    Hua Y; Zhang Z
    Waste Manag; 2024 Jun; 183():199-208. PubMed ID: 38761484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on green closed-loop regeneration of waste lithium iron phosphate based on oxalic acid system.
    Chai X; Yu X; Shen Q; Li X; Lin Y; Cai W; Yuan Y
    Waste Manag; 2024 May; 181():168-175. PubMed ID: 38615500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    Waste Manag; 2012 Aug; 32(8):1575-82. PubMed ID: 22534072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmentally friendly automated line for recovering aluminium and lithium iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zhan J; Zu L; Bai Y; Li H
    Waste Manag Res; 2021 Sep; 39(9):1164-1173. PubMed ID: 33407040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on the recycling of spent lithium iron phosphate batteries.
    Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y
    J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries.
    Bai Y; Zhu H; Zu L; Zhang Y; Bi H
    Waste Manag Res; 2023 Oct; 41(10):1549-1558. PubMed ID: 37070218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery.
    Lei S; Sun W; Yang Y
    Environ Sci Technol; 2024 Feb; 58(8):3609-3628. PubMed ID: 38329241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Peng J; Li H
    Waste Manag Res; 2021 Jan; 39(1):146-155. PubMed ID: 32938335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proof-of-Concept study of ion-exchange method for the recycling of LiFePO
    Zhang X; Liu Z; Qu D
    Waste Manag; 2023 Feb; 157():1-7. PubMed ID: 36512923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition.
    Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X
    Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective recycling of lithium from spent LiNi
    Zhang J; Ding Y; Shi H; Shao P; Yuan X; Hu X; Zhang Q; Zhang H; Luo D; Wang C; Yang L; Luo X
    J Environ Manage; 2024 Feb; 352():120021. PubMed ID: 38183916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; He S; Gao Y; Peng J
    Waste Manag Res; 2019 Aug; 37(8):767-780. PubMed ID: 31218930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.