These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 38761488)
21. A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere. van Overbeek LS; Cassidy M; Kozdroj J; Trevors JT; van Elsas JD J Microbiol Methods; 2002 Jan; 48(1):69-86. PubMed ID: 11733083 [TBL] [Abstract][Full Text] [Related]
22. Interaction between 2,4-Diacetylphloroglucinol- and Hydrogen Cyanide-Producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the Tomato Rhizosphere. Paulin MM; Novinscak A; Lanteigne C; Gadkar VJ; Filion M Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432096 [TBL] [Abstract][Full Text] [Related]
23. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. Schmitz L; Yan Z; Schneijderberg M; de Roij M; Pijnenburg R; Zheng Q; Franken C; Dechesne A; Trindade LM; van Velzen R; Bisseling T; Geurts R; Cheng X ISME J; 2022 Aug; 16(8):1907-1920. PubMed ID: 35444261 [TBL] [Abstract][Full Text] [Related]
24. Fitness Features Involved in the Biocontrol Interaction of Arrebola E; Tienda S; Vida C; de Vicente A; Cazorla FM Front Microbiol; 2019; 10():719. PubMed ID: 31024497 [TBL] [Abstract][Full Text] [Related]
25. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. Zuluaga MYA; Lima Milani KM; Azeredo Gonçalves LS; Martinez de Oliveira AL PLoS One; 2020; 15(1):e0227422. PubMed ID: 31923250 [TBL] [Abstract][Full Text] [Related]
26. Inhibition of biofilm formation by Cd Yang W; Yan H; Zhang J; Gao Y; Xu W; Shang J; Luo Y Microbiol Res; 2018 Oct; 215():1-6. PubMed ID: 30172295 [TBL] [Abstract][Full Text] [Related]
27. Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia. Guo S; Geisen S; Mo Y; Yan X; Huang R; Liu H; Gao Z; Tao C; Deng X; Xiong W; Shen Q; Kowalchuk GA; Li R ISME J; 2024 Jan; 18(1):. PubMed ID: 39312488 [TBL] [Abstract][Full Text] [Related]
28. A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease. Santhanam R; Menezes RC; Grabe V; Li D; Baldwin IT; Groten K Mol Ecol; 2019 Mar; 28(5):1154-1169. PubMed ID: 30633416 [TBL] [Abstract][Full Text] [Related]
29. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. Validov S; Kamilova F; Qi S; Stephan D; Wang JJ; Makarova N; Lugtenberg B J Appl Microbiol; 2007 Feb; 102(2):461-71. PubMed ID: 17241352 [TBL] [Abstract][Full Text] [Related]
30. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Ansari FA; Ahmad I Sci Rep; 2019 Mar; 9(1):4547. PubMed ID: 30872708 [TBL] [Abstract][Full Text] [Related]
31. Enhancing Botrytis disease management in tomato plants: insights from a Pseudomonas putida strain with biocontrol activity. Ampntelnour L; Poulaki EG; Dimitrakas V; Mavrommati M; Amourgis GG; Tjamos SE J Appl Microbiol; 2024 Apr; 135(4):. PubMed ID: 38599633 [TBL] [Abstract][Full Text] [Related]
32. Soil and Soilless Tomato Cultivation Promote Different Microbial Communities That Provide New Models for Future Crop Interventions. Anzalone A; Mosca A; Dimaria G; Nicotra D; Tessitori M; Privitera GF; Pulvirenti A; Leonardi C; Catara V Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955951 [TBL] [Abstract][Full Text] [Related]
33. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum). Cao P; Liu C; Sun P; Fu X; Wang S; Wu F; Wang X Antonie Van Leeuwenhoek; 2016 Dec; 109(12):1573-1582. PubMed ID: 27582275 [TBL] [Abstract][Full Text] [Related]
35. Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato. Zhang L; Khabbaz SE; Wang A; Li H; Abbasi PA J Appl Microbiol; 2015 Mar; 118(3):685-703. PubMed ID: 25512025 [TBL] [Abstract][Full Text] [Related]
36. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Posada LF; Álvarez JC; Romero-Tabarez M; de-Bashan L; Villegas-Escobar V Microbiol Res; 2018 Dec; 217():69-80. PubMed ID: 30384910 [TBL] [Abstract][Full Text] [Related]
37. Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. Tsolakidou MD; Stringlis IA; Fanega-Sleziak N; Papageorgiou S; Tsalakou A; Pantelides IS FEMS Microbiol Ecol; 2019 Oct; 95(10):. PubMed ID: 31504462 [TBL] [Abstract][Full Text] [Related]
38. Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). Acebo-Guerrero Y; Hernández-Rodríguez A; Vandeputte O; Miguélez-Sierra Y; Heydrich-Pérez M; Ye L; Cornelis P; Bertin P; El Jaziri M J Appl Microbiol; 2015 Oct; 119(4):1112-26. PubMed ID: 26218193 [TBL] [Abstract][Full Text] [Related]
39. Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato. Pastor N; Carlier E; Andrés J; Rosas SB; Rovera M J Environ Manage; 2012 Mar; 95 Suppl():S332-7. PubMed ID: 21507555 [TBL] [Abstract][Full Text] [Related]
40. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects. Qiao Y; Wang Z; Sun H; Guo H; Song Y; Zhang H; Ruan Y; Xu Q; Huang Q; Shen Q; Ling N Microbiome; 2024 Jun; 12(1):101. PubMed ID: 38840214 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]