These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38761498)

  • 1. Using DFT on ultrasound measurements to determine patient-specific blood flow boundary conditions for computational hemodynamics of intracranial aneurysms.
    Yi H; Yang Z; Bramlage L; Ludwig B
    Comput Biol Med; 2024 Jun; 176():108563. PubMed ID: 38761498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms?
    Najafi M; Cancelliere NM; Brina O; Bouillot P; Vargas MI; Delattre BM; Pereira VM; Steinman DA
    J Neurointerv Surg; 2021 May; 13(5):459-464. PubMed ID: 32732256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions.
    Marzo A; Singh P; Larrabide I; Radaelli A; Coley S; Gwilliam M; Wilkinson ID; Lawford P; Reymond P; Patel U; Frangi A; Hose DR
    Ann Biomed Eng; 2011 Feb; 39(2):884-96. PubMed ID: 20972626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms.
    Chien A; Tateshima S; Sayre J; Castro M; Cebral J; Viñuela F
    Surg Neurol; 2009 Nov; 72(5):444-50; discussion 450. PubMed ID: 19329152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is Accurate Lumen Segmentation More Important than Outlet Boundary Condition in Image-Based Blood Flow Simulations for Intracranial Aneurysms?
    Korte J; Voß S; Janiga G; Beuing O; Behme D; Saalfeld S; Berg P
    Cardiovasc Eng Technol; 2023 Oct; 14(5):617-630. PubMed ID: 37582997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Parent Artery Segmentation and Boundary Conditions on Hemodynamic Characteristics of Intracranial Aneurysms.
    Hua Y; Oh JH; Kim YB
    Yonsei Med J; 2015 Sep; 56(5):1328-37. PubMed ID: 26256976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability.
    Sarrami-Foroushani A; Lassila T; Gooya A; Geers AJ; Frangi AF
    J Biomech; 2016 Dec; 49(16):3815-3823. PubMed ID: 28573970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms.
    Saalfeld S; Voß S; Beuing O; Preim B; Berg P
    Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1805-1813. PubMed ID: 31363984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate analysis of hemodynamic parameters on intracranial aneurysm initiation of the internal carotid artery.
    Sunderland K; Jiang J
    Med Eng Phys; 2019 Dec; 74():129-136. PubMed ID: 31548156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms.
    Sun Q; Groth A; Aach T
    Med Phys; 2012 Feb; 39(2):742-54. PubMed ID: 22320784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.
    Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H
    Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of blood viscosity models and boundary conditions on the computation of hemodynamic parameters in cerebral aneurysms using computational fluid dynamics.
    Yang H; Hong I; Kim YB; Cho KC; Oh JH
    Acta Neurochir (Wien); 2023 Feb; 165(2):471-482. PubMed ID: 36624234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements.
    Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M
    Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of intracranial aneurysm rupture status: patient-specific inflow boundary may not be a must-have condition in hemodynamic simulations.
    Li W; Wang S; Tian Z; Zhu W; Zhang Y; Zhang Y; Wang Y; Wang K; Yang X; Liu J
    Neuroradiology; 2020 Nov; 62(11):1485-1495. PubMed ID: 32588092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.