These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38761766)
41. Transcriptomic and metabolomic profiles of Pirata subpiraticus in response to copper exposure. Peng Y; Xiang X; Liu W; Zeng Z Ecotoxicol Environ Saf; 2024 Jul; 279():116498. PubMed ID: 38805829 [TBL] [Abstract][Full Text] [Related]
42. Relationship between mRNA biomarker candidates and location near a marine municipal wastewater outfall in the benthic indicator species Modiolus modiolus (L.). Veldhoen N; Kobylarz M; Lowe CJ; Meloche L; deBruyn AM; Helbing CC Aquat Toxicol; 2011 Sep; 105(1-2):119-26. PubMed ID: 21703980 [TBL] [Abstract][Full Text] [Related]
43. [Metal accumulation and MTLP induction in the digestive glands of Perna viridis exposed to Cu]. Li CD; Yan W; Long AM; Ma FJ; Chen SY Huan Jing Ke Xue; 2007 Aug; 28(8):1788-95. PubMed ID: 17926412 [TBL] [Abstract][Full Text] [Related]
44. Insights into deep-sea adaptations and host-symbiont interactions: A comparative transcriptome study on Bathymodiolus mussels and their coastal relatives. Zheng P; Wang M; Li C; Sun X; Wang X; Sun Y; Sun S Mol Ecol; 2017 Oct; 26(19):5133-5148. PubMed ID: 28437568 [TBL] [Abstract][Full Text] [Related]
45. Sensitivity of the glochidia (larvae) of freshwater mussels (Bivalvia: Unionida: Hyriidae) to cadmium, cobalt, copper, lead, nickel and zinc: Differences between metals, species and exposure time. Markich SJ Sci Total Environ; 2017 Dec; 601-602():1427-1436. PubMed ID: 28605861 [TBL] [Abstract][Full Text] [Related]
46. Vibrio diabolicus challenge in Bathymodiolus azoricus populations from Menez Gwen and Lucky Strike hydrothermal vent sites. Martins E; Santos RS; Bettencourt R Fish Shellfish Immunol; 2015 Dec; 47(2):962-77. PubMed ID: 26529571 [TBL] [Abstract][Full Text] [Related]
47. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu²⁺: an exploratory biomarker discovery. Gomes T; Chora S; Pereira CG; Cardoso C; Bebianno MJ Aquat Toxicol; 2014 Oct; 155():327-36. PubMed ID: 25089921 [TBL] [Abstract][Full Text] [Related]
48. Molecular Biomarkers: their significance and application in marine pollution monitoring. Sarkar A; Ray D; Shrivastava AN; Sarker S Ecotoxicology; 2006 May; 15(4):333-40. PubMed ID: 16676218 [TBL] [Abstract][Full Text] [Related]
49. Interactions of a pesticide/heavy metal mixture in marine bivalves: a transcriptomic assessment. Dondero F; Banni M; Negri A; Boatti L; Dagnino A; Viarengo A BMC Genomics; 2011 Apr; 12():195. PubMed ID: 21496282 [TBL] [Abstract][Full Text] [Related]
50. An integrated use of multiple biomarkers to investigate the individual and combined effect of copper and cadmium on the marine green mussel (Perna viridis). Goswami P; Hariharan G; Godhantaraman N; Munuswamy N J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1564-77. PubMed ID: 25137544 [TBL] [Abstract][Full Text] [Related]
51. Ocean acidification induces tissue-specific interactions with copper toxicity on antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck, 1818). Yu X; Liu J; Qiu T; Cao L; Dou S Sci Total Environ; 2023 Jun; 875():162634. PubMed ID: 36894092 [TBL] [Abstract][Full Text] [Related]
52. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. Ritter A; Dittami SM; Goulitquer S; Correa JA; Boyen C; Potin P; Tonon T BMC Plant Biol; 2014 May; 14():116. PubMed ID: 24885189 [TBL] [Abstract][Full Text] [Related]
53. Effects of copper exposure on the energy metabolism in juveniles of the marine clam Mesodesma mactroides. Giacomin M; Jorge MB; Bianchini A Aquat Toxicol; 2014 Jul; 152():30-7. PubMed ID: 24727213 [TBL] [Abstract][Full Text] [Related]
54. Combined effects of copper, nickel, and zinc on growth of a freshwater mussel (Villosa iris) in an environmentally relevant context. Timpano AJ; Jones JW; Beaty B; Hull M; Soucek DJ; Zipper CE Aquat Toxicol; 2022 Jan; 242():106038. PubMed ID: 34879304 [TBL] [Abstract][Full Text] [Related]
55. Global host molecular perturbations upon in situ loss of bacterial endosymbionts in the deep-sea mussel Bathymodiolus azoricus assessed using proteomics and transcriptomics. Détrée C; Haddad I; Demey-Thomas E; Vinh J; Lallier FH; Tanguy A; Mary J BMC Genomics; 2019 Feb; 20(1):109. PubMed ID: 30727955 [TBL] [Abstract][Full Text] [Related]
56. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Siddiqui S; Bielmyer-Fraser GK Aquat Toxicol; 2015 Oct; 167():228-39. PubMed ID: 26363274 [TBL] [Abstract][Full Text] [Related]
57. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Sun J; Zhang Y; Xu T; Zhang Y; Mu H; Zhang Y; Lan Y; Fields CJ; Hui JHL; Zhang W; Li R; Nong W; Cheung FKM; Qiu JW; Qian PY Nat Ecol Evol; 2017 Apr; 1(5):121. PubMed ID: 28812709 [TBL] [Abstract][Full Text] [Related]
58. High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus. Bettencourt R; Pinheiro M; Egas C; Gomes P; Afonso M; Shank T; Santos RS BMC Genomics; 2010 Oct; 11():559. PubMed ID: 20937131 [TBL] [Abstract][Full Text] [Related]
59. Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River, France. Bertucci A; Pierron F; Thébault J; Klopp C; Bellec J; Gonzalez P; Baudrimont M Environ Sci Pollut Res Int; 2017 Dec; 24(35):27145-27159. PubMed ID: 28963680 [TBL] [Abstract][Full Text] [Related]
60. Copper uptake, patterns of bioaccumulation, and effects in glochidia (larvae) of the freshwater mussel (Lampsilis cardium). B Jorge M; Bianchini A; M Wood C; Gillis PL Environ Toxicol Chem; 2018 Apr; 37(4):1092-1103. PubMed ID: 29139577 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]