BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 38762523)

  • 1. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment?
    Wang N; Wang B; Maswikiti EP; Yu Y; Song K; Ma C; Han X; Ma H; Deng X; Yu R; Chen H
    Cell Death Discov; 2024 May; 10(1):237. PubMed ID: 38762523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment.
    Keerthana CK; Rayginia TP; Shifana SC; Anto NP; Kalimuthu K; Isakov N; Anto RJ
    Front Immunol; 2023; 14():1114582. PubMed ID: 36875093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin.
    Bahrambeigi S; Shafiei-Irannejad V
    Biochem Pharmacol; 2020 Apr; 174():113787. PubMed ID: 31884044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment.
    Liu X; Zhao Y; Wu X; Liu Z; Liu X
    Front Oncol; 2022; 12():931104. PubMed ID: 35924168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating T-cell metabolism to enhance immunotherapy in solid tumor.
    Chen C; Wang Z; Ding Y; Qin Y
    Front Immunol; 2022; 13():1090429. PubMed ID: 36618408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders.
    Kauppinen A; Suuronen T; Ojala J; Kaarniranta K; Salminen A
    Cell Signal; 2013 Oct; 25(10):1939-48. PubMed ID: 23770291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging.
    Salminen A; Kauppinen A; Kaarniranta K
    J Mol Med (Berl); 2019 Aug; 97(8):1049-1064. PubMed ID: 31129755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment.
    Zhu Y; Li X; Wang L; Hong X; Yang J
    Front Endocrinol (Lausanne); 2022; 13():988295. PubMed ID: 36046791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the role of AMP-activated protein kinase in metabolic reprogramming of metastatic cancer cells: targeting cellular bioenergetics and biosynthetic pathways for anti-tumor treatment.
    Tyszka-Czochara M; Konieczny P; Majka M
    J Physiol Pharmacol; 2018 Jun; 69(3):. PubMed ID: 30279304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models.
    Hammami I; Chen J; Murschel F; Bronte V; De Crescenzo G; Jolicoeur M
    BMC Cell Biol; 2012 Jul; 13():18. PubMed ID: 22762146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of AMPK in macrophage metabolism, function and polarisation.
    Cui Y; Chen J; Zhang Z; Shi H; Sun W; Yi Q
    J Transl Med; 2023 Dec; 21(1):892. PubMed ID: 38066566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity.
    Zheng Y; Yao Y; Ge T; Ge S; Jia R; Song X; Zhuang A
    J Exp Clin Cancer Res; 2023 Nov; 42(1):291. PubMed ID: 37924140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated bioinformatic analysis of bulk and single-cell sequencing clarifies immune microenvironment and metabolic profiles of lung adenocarcinoma to predict immunotherapy efficacy.
    Li M; Zhou B; Zheng C
    Front Cell Dev Biol; 2023; 11():1163314. PubMed ID: 37091977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.
    Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y
    Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094
    [No Abstract]   [Full Text] [Related]  

  • 16. Targeted Glucose or Glutamine Metabolic Therapy Combined With PD-1/PD-L1 Checkpoint Blockade Immunotherapy for the Treatment of Tumors - Mechanisms and Strategies.
    Ma G; Li C; Zhang Z; Liang Y; Liang Z; Chen Y; Wang L; Li D; Zeng M; Shan W; Niu H
    Front Oncol; 2021; 11():697894. PubMed ID: 34327138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperation of liver cells in health and disease.
    Kmieć Z
    Adv Anat Embryol Cell Biol; 2001; 161():III-XIII, 1-151. PubMed ID: 11729749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment.
    Renner K; Singer K; Koehl GE; Geissler EK; Peter K; Siska PJ; Kreutz M
    Front Immunol; 2017; 8():248. PubMed ID: 28337200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer Metabolism: The Role of Immune Cells Epigenetic Alteration in Tumorigenesis, Progression, and Metastasis of Glioma.
    Kanwore K; Kanwore K; Adzika GK; Abiola AA; Guo X; Kambey PA; Xia Y; Gao D
    Front Immunol; 2022; 13():831636. PubMed ID: 35392088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking LTB
    Yan J; Zhu J; Li X; Yang R; Xiao W; Huang C; Zheng C
    Phytomedicine; 2023 Oct; 119():154968. PubMed ID: 37531900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.