These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38762540)

  • 1. Copper(I)-nitrene platform for chemoproteomic profiling of methionine.
    Sahu S; Emenike B; Beusch CM; Bagchi P; Gordon DE; Raj M
    Nat Commun; 2024 May; 15(1):4243. PubMed ID: 38762540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospray ionization multi-stage mass spectrometric study of the interaction products of the cytotoxic complex [Cu(thp)₄][PF₆] with methionine-rich model peptides.
    Peruzzo V; Tisato F; Porchia M; Santini C; Pellei M; Traldi P
    Rapid Commun Mass Spectrom; 2015 Feb; 29(3):253-62. PubMed ID: 26411623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mets motif peptide found in copper transport proteins selectively binds Cu(I) with methionine-only coordination.
    Jiang J; Nadas IA; Kim MA; Franz KJ
    Inorg Chem; 2005 Dec; 44(26):9787-94. PubMed ID: 16363848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Analysis of in Vivo Methionine Oxidation of the Human Proteome.
    Bettinger JQ; Welle KA; Hryhorenko JR; Ghaemmaghami S
    J Proteome Res; 2020 Feb; 19(2):624-633. PubMed ID: 31801345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-based reagents for chemoselective methionine bioconjugation.
    Lin S; Yang X; Jia S; Weeks AM; Hornsby M; Lee PS; Nichiporuk RV; Iavarone AT; Wells JA; Toste FD; Chang CJ
    Science; 2017 Feb; 355(6325):597-602. PubMed ID: 28183972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I).
    Rubino JT; Riggs-Gelasco P; Franz KJ
    J Biol Inorg Chem; 2010 Sep; 15(7):1033-49. PubMed ID: 20437064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper(II) interaction with the Human Prion 103-112 fragment - Coordination and oxidation.
    Csire G; Nagy L; Várnagy K; Kállay C
    J Inorg Biochem; 2017 May; 170():195-201. PubMed ID: 28260678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Quantitative Chemoproteomic Platform to Monitor Selenocysteine Reactivity within a Complex Proteome.
    Bak DW; Gao J; Wang C; Weerapana E
    Cell Chem Biol; 2018 Sep; 25(9):1157-1167.e4. PubMed ID: 29983274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust method for quantitative high-throughput analysis of proteomes by 18O labeling.
    Bonzon-Kulichenko E; Pérez-Hernández D; Núñez E; Martínez-Acedo P; Navarro P; Trevisan-Herraz M; Ramos Mdel C; Sierra S; Martínez-Martínez S; Ruiz-Meana M; Miró-Casas E; García-Dorado D; Redondo JM; Burgos JS; Vázquez J
    Mol Cell Proteomics; 2011 Jan; 10(1):M110.003335. PubMed ID: 20807836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dioxygen on copper(II) binding to alpha-synuclein.
    Lucas HR; Lee JC
    J Inorg Biochem; 2010 Mar; 104(3):245-9. PubMed ID: 20064662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of methionine into homocysteic acid in heavily oxidized proteomics samples.
    Bern M; Saladino J; Sharp JS
    Rapid Commun Mass Spectrom; 2010 Mar; 24(6):768-72. PubMed ID: 20169556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox proteomics of protein-bound methionine oxidation.
    Ghesquière B; Jonckheere V; Colaert N; Van Durme J; Timmerman E; Goethals M; Schymkowitz J; Rousseau F; Vandekerckhove J; Gevaert K
    Mol Cell Proteomics; 2011 May; 10(5):M110.006866. PubMed ID: 21406390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics methods to study methionine oxidation.
    Ghesquière B; Gevaert K
    Mass Spectrom Rev; 2014; 33(2):147-56. PubMed ID: 24178673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Products of Cu(II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide.
    Kowalik-Jankowska T; Rajewska A; Jankowska E; Wiśniewska K; Grzonka Z
    J Inorg Biochem; 2006 Oct; 100(10):1623-31. PubMed ID: 16839607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues.
    Walker EJ; Bettinger JQ; Welle KA; Hryhorenko JR; Molina Vargas AM; O'Connell MR; Ghaemmaghami S
    J Biol Chem; 2022 May; 298(5):101872. PubMed ID: 35346688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial methionine has much less influence on reduction potentials in a CuA center than in a blue copper center.
    Hwang HJ; Berry SM; Nilges MJ; Lu Y
    J Am Chem Soc; 2005 May; 127(20):7274-5. PubMed ID: 15898751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence.
    Singh SK; Roberts SA; McDevitt SF; Weichsel A; Wildner GF; Grass GB; Rensing C; Montfort WR
    J Biol Chem; 2011 Oct; 286(43):37849-57. PubMed ID: 21903583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of methionine, histidine and cysteine in copper(I)-binding peptides reveals differences relevant to copper uptake by organisms in diverse environments.
    Rubino JT; Chenkin MP; Keller M; Riggs-Gelasco P; Franz KJ
    Metallomics; 2011 Jan; 3(1):61-73. PubMed ID: 21553704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu
    Ramis R; Ortega-Castro J; Vilanova B; Adrover M; Frau J
    Int J Biol Macromol; 2021 Feb; 169():251-263. PubMed ID: 33345970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Reactivity Studies of a Terminal Copper-Nitrene Species.
    Corona T; Ribas L; Rovira M; Farquhar ER; Ribas X; Ray K; Company A
    Angew Chem Int Ed Engl; 2016 Nov; 55(45):14005-14008. PubMed ID: 27723252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.