These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38762540)
21. Chemoselective Methionine Bioconjugation: Site-Selective Fluorine-18 Labeling of Proteins and Peptides. Lin D; Wallace M; Allentoff AJ; Donnelly DJ; Gomes E; Voronin K; Gong S; Huang RY; Kim H; Caceres-Cortes J; Bonacorsi S Bioconjug Chem; 2020 Aug; 31(8):1908-1916. PubMed ID: 32687313 [TBL] [Abstract][Full Text] [Related]
22. Accurate Proteomewide Measurement of Methionine Oxidation in Aging Mouse Brains. Bettinger JQ; Simon M; Korotkov A; Welle KA; Hryhorenko JR; Seluanov A; Gorbunova V; Ghaemmaghami S J Proteome Res; 2022 Jun; 21(6):1495-1509. PubMed ID: 35584362 [TBL] [Abstract][Full Text] [Related]
23. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome. Zang J; Chen Y; Zhu W; Lin S Biochemistry; 2020 Jan; 59(2):132-138. PubMed ID: 31592657 [TBL] [Abstract][Full Text] [Related]
24. Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis. Kim J; Li BX; Huang RY; Qiao JX; Ewing WR; MacMillan DWC J Am Chem Soc; 2020 Dec; 142(51):21260-21266. PubMed ID: 33290649 [TBL] [Abstract][Full Text] [Related]
25. Oxidation of protein-bound methionine in Photofrin-photodynamic therapy-treated human tumor cells explored by methionine-containing peptide enrichment and quantitative proteomics approach. Hsieh YJ; Chien KY; Yang IF; Lee IN; Wu CC; Huang TY; Yu JS Sci Rep; 2017 May; 7(1):1370. PubMed ID: 28465586 [TBL] [Abstract][Full Text] [Related]
26. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome. Walker EJ; Bettinger JQ; Welle KA; Hryhorenko JR; Ghaemmaghami S Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6081-6090. PubMed ID: 30846556 [TBL] [Abstract][Full Text] [Related]
27. You cannot oxidize what you cannot reach: Oxidative susceptibility of buried methionine residues. Kulczyk AW; Leustek T J Biol Chem; 2022 May; 298(5):101973. PubMed ID: 35461810 [TBL] [Abstract][Full Text] [Related]
28. Identification of oxidized methionine residues in peptides containing two methionine residues by derivatization and matrix-assisted laser desorption/ionization mass spectrometry. Hollemeyer K; Heinzle E; Tholey A Proteomics; 2002 Nov; 2(11):1524-31. PubMed ID: 12442252 [TBL] [Abstract][Full Text] [Related]
29. Role of N-terminal methionine residues in the redox activity of copper bound to alpha-synuclein. Rodríguez EE; Arcos-López T; Trujano-Ortiz LG; Fernández CO; González FJ; Vela A; Quintanar L J Biol Inorg Chem; 2016 Sep; 21(5-6):691-702. PubMed ID: 27422629 [TBL] [Abstract][Full Text] [Related]
31. Sequence proximity between Cu(II) and Cu(I) binding sites of human copper transporter 1 model peptides defines reactivity with ascorbate and O2. Schwab S; Shearer J; Conklin SE; Alies B; Haas KL J Inorg Biochem; 2016 May; 158():70-76. PubMed ID: 26778425 [TBL] [Abstract][Full Text] [Related]
32. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases. Vougier S; Mary J; Dautin N; Vinh J; Friguet B; Ladant D J Biol Chem; 2004 Jul; 279(29):30210-8. PubMed ID: 15148319 [TBL] [Abstract][Full Text] [Related]
33. EPR and NMR spectroscopies provide input on the coordination of Cu(I) and Ag(I) to a disordered methionine segment. Shenberger Y; Gottlieb HE; Ruthstein S J Biol Inorg Chem; 2015 Jun; 20(4):719-27. PubMed ID: 25822808 [TBL] [Abstract][Full Text] [Related]
34. Methionine Alkylation as an Approach to Quantify Methionine Oxidation Using Mass Spectrometry. Hoare M; Tan R; Welle KA; Swovick K; Hryhorenko JR; Ghaemmaghami S J Am Soc Mass Spectrom; 2024 Mar; 35(3):433-440. PubMed ID: 38324783 [TBL] [Abstract][Full Text] [Related]
35. Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. Xu G; Shin SB; Jaffrey SR Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19310-5. PubMed ID: 19892738 [TBL] [Abstract][Full Text] [Related]
37. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide. Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841 [TBL] [Abstract][Full Text] [Related]
38. Influence of various endogenous and artefact modifications on large-scale proteomics analysis. Bienvenut WV; Sumpton D; Lilla S; Martinez A; Meinnel T; Giglione C Rapid Commun Mass Spectrom; 2013 Feb; 27(3):443-50. PubMed ID: 23280976 [TBL] [Abstract][Full Text] [Related]
39. Generation of soluble oligomeric beta-amyloid species via copper catalyzed oxidation with implications for Alzheimer's disease: a DFT study. Haeffner F; Barnham KJ; Bush AI; Brinck T J Mol Model; 2010 Jun; 16(6):1103-8. PubMed ID: 19924451 [TBL] [Abstract][Full Text] [Related]
40. Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Peskin AV; Turner R; Maghzal GJ; Winterbourn CC; Kettle AJ Biochemistry; 2009 Oct; 48(42):10175-82. PubMed ID: 19775156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]