These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38762544)

  • 1. Genome-scale analysis of interactions between genetic perturbations and natural variation.
    Hale JJ; Matsui T; Goldstein I; Mullis MN; Roy KR; Ville CN; Miller D; Wang C; Reynolds T; Steinmetz LM; Levy SF; Ehrenreich IM
    Nat Commun; 2024 May; 15(1):4234. PubMed ID: 38762544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale analysis of interactions between genetic perturbations and natural variation.
    Hale JJ; Matsui T; Goldstein I; Mullis MN; Roy KR; Ville CN; Miller D; Wang C; Reynolds T; Steinmetz LM; Levy SF; Ehrenreich IM
    bioRxiv; 2024 Jan; ():. PubMed ID: 38293072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae.
    Paliwal S; Fiumera AC; Fiumera HL
    Genetics; 2014 Nov; 198(3):1251-65. PubMed ID: 25164882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic genetic architecture of yeast response to environmental perturbation shed light on origin of cryptic genetic variation.
    Zan Y; Carlborg Ö
    PLoS Genet; 2020 May; 16(5):e1008801. PubMed ID: 32392218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains.
    Lewis JA; Broman AT; Will J; Gasch AP
    Genetics; 2014 Sep; 198(1):369-82. PubMed ID: 24970865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of response-modulated genetic interactions by sensitivity-based epistatic analysis.
    Batenchuk C; Tepliakova L; Kaern M
    BMC Genomics; 2010 Sep; 11():493. PubMed ID: 20831804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics.
    Maclean CJ; Metzger BPH; Yang JR; Ho WC; Moyers B; Zhang J
    Mol Biol Evol; 2017 Oct; 34(10):2486-2502. PubMed ID: 28472365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay of additivity, dominance, and epistasis on fitness in a diploid yeast cross.
    Matsui T; Mullis MN; Roy KR; Hale JJ; Schell R; Levy SF; Ehrenreich IM
    Nat Commun; 2022 Mar; 13(1):1463. PubMed ID: 35304450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Mapping of Epistatic Genetic Interactions in Natural Isolates: Combining Classical Genetics and Genomics.
    Hou J; Schacherer J
    Methods Mol Biol; 2016; 1361():345-60. PubMed ID: 26483031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed precision genome editing with trackable genomic barcodes in yeast.
    Roy KR; Smith JD; Vonesch SC; Lin G; Tu CS; Lederer AR; Chu A; Suresh S; Nguyen M; Horecka J; Tripathi A; Burnett WT; Morgan MA; Schulz J; Orsley KM; Wei W; Aiyar RS; Davis RW; Bankaitis VA; Haber JE; Salit ML; St Onge RP; Steinmetz LM
    Nat Biotechnol; 2018 Jul; 36(6):512-520. PubMed ID: 29734294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth.
    Ziv N; Shuster BM; Siegal ML; Gresham D
    Genetics; 2017 Jul; 206(3):1645-1657. PubMed ID: 28495957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epistatic interaction maps relative to multiple metabolic phenotypes.
    Snitkin ES; Segrè D
    PLoS Genet; 2011 Feb; 7(2):e1001294. PubMed ID: 21347328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complex underpinnings of genetic background effects.
    Mullis MN; Matsui T; Schell R; Foree R; Ehrenreich IM
    Nat Commun; 2018 Sep; 9(1):3548. PubMed ID: 30224702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis.
    Swinnen S; Schaerlaekens K; Pais T; Claesen J; Hubmann G; Yang Y; Demeke M; Foulquié-Moreno MR; Goovaerts A; Souvereyns K; Clement L; Dumortier F; Thevelein JM
    Genome Res; 2012 May; 22(5):975-84. PubMed ID: 22399573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple locus linkage analysis of genomewide expression in yeast.
    Storey JD; Akey JM; Kruglyak L
    PLoS Biol; 2005 Aug; 3(8):e267. PubMed ID: 16035920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the Genetic Regulation of Yeast Growth Plasticity in Response to Environmental Changes.
    Zan Y; Carlborg Ö
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33137976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae.
    Wilkening S; Lin G; Fritsch ES; Tekkedil MM; Anders S; Kuehn R; Nguyen M; Aiyar RS; Proctor M; Sakhanenko NA; Galas DJ; Gagneur J; Deutschbauer A; Steinmetz LM
    Genetics; 2014 Mar; 196(3):853-65. PubMed ID: 24374355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic epistasis under varying environmental perturbations.
    Barker B; Xu L; Gu Z
    PLoS One; 2015; 10(1):e0114911. PubMed ID: 25625594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of variation in transcription factor binding in yeast.
    Zheng W; Zhao H; Mancera E; Steinmetz LM; Snyder M
    Nature; 2010 Apr; 464(7292):1187-91. PubMed ID: 20237471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding the chromatin proteome of a single genomic locus by DNA sequencing.
    Korthout T; Poramba-Liyanage DW; van Kruijsbergen I; Verzijlbergen KF; van Gemert FPA; van Welsem T; van Leeuwen F
    PLoS Biol; 2018 Jul; 16(7):e2005542. PubMed ID: 30005073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.