These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38763240)
1. Anchoring chitosan/phytic acid complexes on polypyrrole nanotubes as capacitive deionization electrodes for uranium capture from wastewater. Zhao X; Chen D; Shi M; Zhao R Int J Biol Macromol; 2024 Jun; 270(Pt 2):132491. PubMed ID: 38763240 [TBL] [Abstract][Full Text] [Related]
2. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Ma CY; Huang SC; Chou PH; Den W; Hou CH Chemosphere; 2016 Mar; 146():113-20. PubMed ID: 26714293 [TBL] [Abstract][Full Text] [Related]
3. Preparation of MOF/polypyrrole and flower-like MnO Kang H; Zhang D; Chen X; Zhao H; Yang D; Li Y; Bao M; Wang Z Water Res; 2023 Feb; 229():119441. PubMed ID: 36470045 [TBL] [Abstract][Full Text] [Related]
4. Efficient removal of uranium (VI) with a phytic acid-doped polypyrrole/ carbon felt electrode using double potential step technique. Huang J; Liu Z; Huang D; Jin T; Qian Y J Hazard Mater; 2022 Jul; 433():128775. PubMed ID: 35358817 [TBL] [Abstract][Full Text] [Related]
5. A novel composite electrode with multiple pore structures for efficient treatment of heavy metal ions in capacitive deionization. Wang Y; Zhang Y; Cai N; Xue J J Environ Manage; 2024 Sep; 367():121974. PubMed ID: 39079498 [TBL] [Abstract][Full Text] [Related]
6. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics. Li G; Cai W; Zhao R; Hao L Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403 [TBL] [Abstract][Full Text] [Related]
7. Novel graphene-like electrodes for capacitive deionization. Li H; Zou L; Pan L; Sun Z Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326 [TBL] [Abstract][Full Text] [Related]
8. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Huang SY; Fan CS; Hou CH J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658 [TBL] [Abstract][Full Text] [Related]
9. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode. Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198 [TBL] [Abstract][Full Text] [Related]
10. Selective removal of uranyl ions using ion-imprinted amino-phenolic functionalized chitosan. Elsayed NH; Monier M; Alatawi RAS; Al-Anazi M; Albalawi M; Alatawi MJ Int J Biol Macromol; 2023 May; 237():124073. PubMed ID: 36934819 [TBL] [Abstract][Full Text] [Related]
11. Selective removal of Sr(II) from saliferous radioactive wastewater by capacitive deionization. Xiang S; Mao H; Geng W; Xu Y; Zhou H J Hazard Mater; 2022 Jun; 431():128591. PubMed ID: 35247739 [No Abstract] [Full Text] [Related]
12. Efficiency of Ppy-PA-pani and Ppy-PA composite adsorbents in Chromium(VI) removal from aqueous solution. Pal CA; Choi JS; Angaru GKR; Lingamdinne LP; Choi YL; Koduru JR; Yang JK; Chang YY Chemosphere; 2023 Oct; 337():139323. PubMed ID: 37392794 [TBL] [Abstract][Full Text] [Related]
13. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Hassanvand A; Chen GQ; Webley PA; Kentish SE Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional cubic ordered mesoporous carbon with chitosan for capacitive deionization disinfection of water. Cao C; Wu X; Zheng Y; Chen Y Environ Sci Pollut Res Int; 2020 May; 27(13):15001-15010. PubMed ID: 32067173 [TBL] [Abstract][Full Text] [Related]
15. Theory of water treatment by capacitive deionization with redox active porous electrodes. He F; Biesheuvel PM; Bazant MZ; Hatton TA Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915 [TBL] [Abstract][Full Text] [Related]
16. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. Datar SD; Mane R; Jha N Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462 [TBL] [Abstract][Full Text] [Related]
17. Tio Ma S; Liu C; Xu Y; Tan Y; Yang D; Wang F; Ma L Water Sci Technol; 2021 Sep; 84(5):1228-1244. PubMed ID: 34534119 [TBL] [Abstract][Full Text] [Related]
18. Effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization. Sun Z; Li Q; Chai L; Shu Y; Wang Y; Qiu D Chemosphere; 2019 Aug; 229():341-348. PubMed ID: 31078891 [TBL] [Abstract][Full Text] [Related]
19. Facile and scalable synthesis of functionalized hierarchical porous polymers for efficient uranium adsorption. Liu Y; Ni S; Wang W; Zhao Y; Meng Y; Liu H; Yang L Water Res; 2024 Jun; 257():121683. PubMed ID: 38703542 [TBL] [Abstract][Full Text] [Related]