These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38764622)

  • 1. Temperature-Induced Luminescence Intensity Fluctuation of Protein-Protected Copper Nanoclusters: Role of Scaffold Conformation vs Nonradiative Transition.
    Sebastian A; P K; Aarya ; Sen Mojumdar S
    ACS Omega; 2024 May; 9(19):21520-21527. PubMed ID: 38764622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Engineering of Atomically Precise M(I) Nanoclusters: From Structural Control to Room Temperature Photoluminescence Enhancement.
    Biswas S; Das AK; Mandal S
    Acc Chem Res; 2023 Jul; 56(13):1838-1849. PubMed ID: 37357739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isomerization-induced enhancement of luminescence in Au
    Chen Y; Zhou M; Li Q; Gronlund H; Jin R
    Chem Sci; 2020 Jul; 11(31):8176-8183. PubMed ID: 34123088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. d-Penicillamine-coated Cu/Ag alloy nanocluster superstructures: aggregation-induced emission and tunable photoluminescence from red to orange.
    Kong L; Chu X; Wang C; Zhou H; Wu Y; Liu W
    Nanoscale; 2018 Jan; 10(4):1631-1640. PubMed ID: 29308818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-Induced Optical Transitions in Metal Nanoclusters.
    Li Q; Mosquera MA; Jones LO; Parakh A; Chai J; Jin R; Schatz GC; Gu XW
    ACS Nano; 2020 Sep; 14(9):11888-11896. PubMed ID: 32790326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the Electron-Phonon Interaction in Au
    Liu Z; Li Y; Kahng E; Xue S; Du X; Li S; Jin R
    ACS Nano; 2022 Nov; 16(11):18448-18458. PubMed ID: 36252530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the photoluminescence of atomically precise nanoclusters.
    Kang X; Zhu M
    Chem Soc Rev; 2019 Apr; 48(8):2422-2457. PubMed ID: 30838373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Detection of Ag(I) via Size-Induced Photoluminescence Quenching of Biocompatible Green-Emitting, l-Tryptophan-Scaffolded Copper Nanoclusters.
    Aarya ; Thomas T; Sarangi BR; Sen Mojumdar S
    ACS Omega; 2023 Apr; 8(16):14630-14640. PubMed ID: 37125097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent photoluminescence of structurally-precise quantum-confined Au25(SC8H9)18 and Au38(SC12H25)24 metal nanoparticles.
    Green TD; Yi C; Zeng C; Jin R; McGill S; Knappenberger KL
    J Phys Chem A; 2014 Nov; 118(45):10611-21. PubMed ID: 25226506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source of Bright Near-Infrared Luminescence in Gold Nanoclusters.
    Li Q; Zeman CJ; Schatz GC; Gu XW
    ACS Nano; 2021 Oct; 15(10):16095-16105. PubMed ID: 34613697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the Near-Infrared Photoluminescence Mechanism of Homometal and Doped M
    Liu Z; Zhou M; Luo L; Wang Y; Kahng E; Jin R
    J Am Chem Soc; 2023 Sep; 145(36):19969-19981. PubMed ID: 37642696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand effects on the photoluminescence of atomically precise silver nanoclusters.
    Sahoo K; Chakraborty I
    Nanoscale; 2023 Feb; 15(7):3120-3129. PubMed ID: 36723052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-Copper Nanocluster Based Down-Conversion White Light-Emitting Devices.
    Wang Z; Chen B; Susha AS; Wang W; Reckmeier CJ; Chen R; Zhong H; Rogach AL
    Adv Sci (Weinh); 2016 Nov; 3(11):1600182. PubMed ID: 27980993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoluminescence Quenching of Hydrophobic Ag
    Shen H; Xu J; Fu Z; Wei X; Kang X; Shi W; Zhu M
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202317995. PubMed ID: 38191987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters.
    Liu Z; Luo L; Jin R
    Adv Mater; 2024 Feb; 36(8):e2309073. PubMed ID: 37922431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of guanidine hydrochloride (GdnHCl) and urea denaturation on inactivation and unfolding of human placental cystatin (HPC).
    Rashid F; Sharma S; Bano B
    Protein J; 2005 Jul; 24(5):283-92. PubMed ID: 16284726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cu
    Nematulloev S; Huang RW; Yin J; Shkurenko A; Dong C; Ghosh A; Alamer B; Naphade R; Hedhili MN; Maity P; Eddaoudi M; Mohammed OF; Bakr OM
    Small; 2021 Jul; 17(27):e2006839. PubMed ID: 33739606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton-phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots.
    Jagtap AM; Khatei J; Koteswara Rao KS
    Phys Chem Chem Phys; 2015 Nov; 17(41):27579-87. PubMed ID: 26426345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photostable Copper Nanoclusters: Compatible Förster Resonance Energy-Transfer Assays and a Nanothermometer.
    Ghosh S; Das NK; Anand U; Mukherjee S
    J Phys Chem Lett; 2015 Apr; 6(7):1293-8. PubMed ID: 26262990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters.
    Lin L; Hu Y; Zhang L; Huang Y; Zhao S
    Biosens Bioelectron; 2017 Aug; 94():523-529. PubMed ID: 28343105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.