These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38764687)

  • 1. Characteristic Analysis and Risk Control of Syngas Explosion during Underground Coal Gasification.
    Huang WG; Duan TH; Wang ZT; Li HZ
    ACS Omega; 2024 May; 9(19):21307-21321. PubMed ID: 38764687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas production strategy of underground coal gasification based on multiple gas sources.
    Tianhong D; Zuotang W; Limin Z; Dongdong L
    ScientificWorldJournal; 2014; 2014():154197. PubMed ID: 25114953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Initial Turbulence on the Explosion Limit and Flame Propagation Behaviors of Premixed Syngas-Air Mixtures.
    Zhang H; Tan Y; Zhang S; Xu Y; Zhao Y; Guo J; Cao W
    ACS Omega; 2021 Nov; 6(46):30910-30918. PubMed ID: 34841134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.
    Agon N; Hrabovský M; Chumak O; Hlína M; Kopecký V; Masláni A; Bosmans A; Helsen L; Skoblja S; Van Oost G; Vierendeels J
    Waste Manag; 2016 Jan; 47(Pt B):246-55. PubMed ID: 26210232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation Law of Hybrid Explosion Characteristic Parameters of Gas and Coal Dust Coupled with Multiple Factors.
    Peng L; Ji W; Zhang Y; Tian R
    ACS Omega; 2024 Jul; 9(26):27969-27975. PubMed ID: 38973870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gasification of algal biomass (Cladophora glomerata L.) with CO
    Ebadi AG; Hisoriev H
    Environ Technol; 2019 Feb; 40(6):749-755. PubMed ID: 29141510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Volatile Content on the Explosion Characteristics of Coal Dust.
    Sha D; Li Y; Zhou X; Zhang J; Zhang H; Yu J
    ACS Omega; 2021 Oct; 6(41):27150-27157. PubMed ID: 34693135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of inorganic constitutions of condensate and solid residue generated from small-scale ex situ experiments in the context of underground coal gasification.
    Sadasivam S; Zagorščak R; Thomas HR; Kapusta K; Stańczyk K
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2203-2213. PubMed ID: 34365600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study of the Influence of H
    Zhang J; Zhou S; Su Y; Luo Z; Wang T
    ACS Omega; 2022 Sep; 7(36):32432-32441. PubMed ID: 36120051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas explosion characteristics and spray control mechanism in underground square.
    Zhang C; Ma J; Shen J; Jiao D; Chen J; Wu X; Wang L
    PLoS One; 2024; 19(4):e0293421. PubMed ID: 38656963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of CO on Explosion Limits and Characteristics of the CH
    Zhang X; Zhou X; Bai G; Li C
    ACS Omega; 2022 Jul; 7(28):24766-24776. PubMed ID: 35874214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ sorption phenomena can mitigate potential negative environmental effects of underground coal gasification (UCG) - an experimental study of phenol removal on UCG-derived residues in the aspect of contaminant retardation.
    Strugała-Wilczek A; Basa W; Kapusta K; Soukup K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111710. PubMed ID: 33396041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overall characterization of cork dust explosion.
    Pilão R; Ramalho E; Pinho C
    J Hazard Mater; 2006 May; 133(1-3):183-95. PubMed ID: 16297545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring the gasification area and its behavior in underground coal gasification by acoustic emission technique instead of temperature measurement.
    Hamanaka A; Ishii Y; Itakura KI; Sasaoka T; Shimada H; Widodo NP; Sulistianto B; Kodama JI; Deguchi G
    Sci Rep; 2023 Jun; 13(1):9757. PubMed ID: 37328489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the presence of water on sulfur removal capacity during H
    Dogan C; Martini S; Retschitzegger S; Çetin B
    Environ Technol; 2023 Nov; 44(25):3803-3812. PubMed ID: 35499395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of syngas produced from MSW gasification at commercial-scale ENERGOS Plants.
    del Alamo G; Hart A; Grimshaw A; Lundstrøm P
    Waste Manag; 2012 Oct; 32(10):1835-42. PubMed ID: 22704001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gasification of MDF residue in an updraft fixed bed gasifier to produce heat and power via an ORC turbine.
    Işık KE; Dogru M; Erdem A
    Waste Manag; 2023 Sep; 169():43-51. PubMed ID: 37393755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration-dependence of the explosion characteristics of chlorine dioxide gas.
    Jin RY; Hu SQ; Zhang YG; Bo T
    J Hazard Mater; 2009 Jul; 166(2-3):842-7. PubMed ID: 19155128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental data revealing explosion characteristics of methane, air, and coal mixtures.
    Deng J; Qu J; Wang QH; Xiao Y; Cheng YC; Shu CM
    RSC Adv; 2019 Aug; 9(42):24627-24637. PubMed ID: 35527867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters.
    Gao Y; Wang M; Raheem A; Wang F; Wei J; Xu D; Song X; Bao W; Huang A; Zhang S; Zhang H
    ACS Omega; 2023 Sep; 8(35):31620-31631. PubMed ID: 37692248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.