These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 38765033)
61. Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries. Mei L; Li C; Qu B; Zhang M; Xu C; Lei D; Chen Y; Xu Z; Chen L; Li Q; Wang T Nanoscale; 2012 Sep; 4(18):5731-7. PubMed ID: 22892999 [TBL] [Abstract][Full Text] [Related]
62. Investigating the Perovskite Ag Le Calvez E; Espinosa-Angeles JC; Whang GJ; Dupré N; Dunn BS; Crosnier O; Brousse T Front Chem; 2022; 10():873783. PubMed ID: 35494628 [TBL] [Abstract][Full Text] [Related]
63. Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy. Niehoff P; Passerini S; Winter M Langmuir; 2013 May; 29(19):5806-16. PubMed ID: 23586847 [TBL] [Abstract][Full Text] [Related]
64. Evaluating Electrolyte-Anode Interface Stability in Sodium All-Solid-State Batteries. Deysher G; Chen YT; Sayahpour B; Lin SW; Ham SY; Ridley P; Cronk A; Wu EA; Tan DHS; Doux JM; Oh JAS; Jang J; Nguyen LHB; Meng YS ACS Appl Mater Interfaces; 2022 Oct; 14(42):47706-47715. PubMed ID: 36239697 [TBL] [Abstract][Full Text] [Related]
65. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries. Intan NN; Pfaendtner J ACS Appl Mater Interfaces; 2021 Feb; 13(7):8169-8180. PubMed ID: 33587593 [TBL] [Abstract][Full Text] [Related]
66. In Operando Detection of the Onset and Mapping of Lithium Plating Regimes during Fast Charging of Lithium-Ion Batteries. Fear C; Adhikary T; Carter R; Mistry AN; Love CT; Mukherjee PP ACS Appl Mater Interfaces; 2020 Jul; 12(27):30438-30448. PubMed ID: 32551528 [TBL] [Abstract][Full Text] [Related]
67. Improving interfacial stability of ultrahigh-voltage lithium metal batteries with single-crystal Ni-rich cathode via a multifunctional additive strategy. Zhang Z; Liu F; Huang Z; Yi M; Fan X; Bai M; Hong B; Zhang Z; Li J; Lai Y J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1471-1480. PubMed ID: 34742066 [TBL] [Abstract][Full Text] [Related]
68. Fast charging of energy-dense lithium-ion batteries. Wang CY; Liu T; Yang XG; Ge S; Stanley NV; Rountree ES; Leng Y; McCarthy BD Nature; 2022 Nov; 611(7936):485-490. PubMed ID: 36224388 [TBL] [Abstract][Full Text] [Related]
69. Quantitative Analysis of Origin of Lithium Inventory Loss and Interface Evolution over Extended Fast Charge Aging in Li Ion Batteries. Yang Z; Tanim TR; Liu H; Bloom I; Dufek EJ; Key B; Ingram BJ ACS Appl Mater Interfaces; 2023 Aug; 15(31):37410-37421. PubMed ID: 37493566 [TBL] [Abstract][Full Text] [Related]
70. Emerging Multiscale Porous Anodes toward Fast Charging Lithium-Ion Batteries. Zhu G; Luo D; Chen X; Yang J; Zhang H ACS Nano; 2023 Nov; 17(21):20850-20874. PubMed ID: 37921490 [TBL] [Abstract][Full Text] [Related]
71. Extremely Low Resistance of Li Kawasoko H; Shiraki S; Suzuki T; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2018 Aug; 10(32):27498-27502. PubMed ID: 29989389 [TBL] [Abstract][Full Text] [Related]
72. Electrochemical-driven green recovery of lithium, graphite and cathode from lithium-ion batteries using water. Sarkar A; Shrotriya P; Nlebedim IC Waste Manag; 2022 Aug; 150():320-327. PubMed ID: 35905673 [TBL] [Abstract][Full Text] [Related]
73. An Electrode-Crosstalk-Suppressing Smart Polymer Electrolyte for High Safety Lithium-Ion Batteries. Dong T; Xu G; Xie B; Liu T; Gong T; Sun C; Wang J; Zhang S; Zhang X; Zhang H; Huang L; Cui G Adv Mater; 2024 Jun; 36(26):e2400737. PubMed ID: 38572792 [TBL] [Abstract][Full Text] [Related]
74. The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries. Cai W; Yan C; Yao YX; Xu L; Chen XR; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2021 Jun; 60(23):13007-13012. PubMed ID: 33793052 [TBL] [Abstract][Full Text] [Related]
75. Surface Passivation of LiCoO Peng J; Peng H; Shi CG; Huang L; Sun SG ChemSusChem; 2023 Dec; 16(24):e202300715. PubMed ID: 37661195 [TBL] [Abstract][Full Text] [Related]
76. Unraveling the Impact of Ether and Carbonate Electrolytes on the Solid-Electrolyte Interface and the Electrochemical Performances of ZnSe@C Core-Shell Composites as Anodes of Lithium-Ion Batteries. Ma D; Zhu Q; Li X; Gao H; Wang X; Kang X; Tian Y ACS Appl Mater Interfaces; 2019 Feb; 11(8):8009-8017. PubMed ID: 30702859 [TBL] [Abstract][Full Text] [Related]
77. 10 μm-Level TiNb Fan J; Chen Z; Liang C; Tao K; Zhang M; Sun Y; Zhan R Chemistry; 2024 Jan; 30(6):e202302857. PubMed ID: 37872690 [TBL] [Abstract][Full Text] [Related]
78. Space-Charge Layers in All-Solid-State Batteries; Important or Negligible? de Klerk NJJ; Wagemaker M ACS Appl Energy Mater; 2018 Oct; 1(10):5609-5618. PubMed ID: 30406216 [TBL] [Abstract][Full Text] [Related]
79. Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. Li W; Kim UH; Dolocan A; Sun YK; Manthiram A ACS Nano; 2017 Jun; 11(6):5853-5863. PubMed ID: 28502161 [TBL] [Abstract][Full Text] [Related]
80. Silicon quantum dots inlaid micron graphite anode for fast chargeable and high energy density Li-ion batteries. Li H; Buckingham MA Front Chem; 2022; 10():1091268. PubMed ID: 36561146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]