These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 3876570)

  • 1. Morphology of the interphotoreceptor matrix as revealed by rapid freezing technique.
    Yamada E
    Prog Clin Biol Res; 1985; 190():25-32. PubMed ID: 3876570
    [No Abstract]   [Full Text] [Related]  

  • 2. The interphotoreceptor matrix and the interphotoreceptor space of the vertebrate retina.
    Bernstein MH
    Scan Electron Microsc; 1985; (Pt 2):859-68. PubMed ID: 2413523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Three-dimensional visualization of the interphotoreceptor matrix--a deep-etching study].
    Matsuoka T; Matsuo N
    Nippon Ganka Gakkai Zasshi; 1984 Dec; 88(12):1450-63. PubMed ID: 6532190
    [No Abstract]   [Full Text] [Related]  

  • 4. [Important concepts and technology in the study of vision: fine structures of photoreceptor cells revealed by recent techniques in electron microscopy].
    Usukura J
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):715-23. PubMed ID: 2748909
    [No Abstract]   [Full Text] [Related]  

  • 5. Ultrastructure of the synaptic ribbons in photoreceptor cells of Rana catesbeiana revealed by freeze-etching and freeze-substitution.
    Usukura J; Yamada E
    Cell Tissue Res; 1987 Mar; 247(3):483-8. PubMed ID: 3494517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The interphotoreceptor matrix: its development, composition and functional importance].
    Panova IG
    Ontogenez; 1994; 25(1):5-13. PubMed ID: 8152725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional variation within the interphotoreceptor matrix from fovea to the retinal periphery.
    Hollyfield JG; Varner HH; Rayborn ME
    Eye (Lond); 1990; 4 ( Pt 2)():333-9. PubMed ID: 2199241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restricted extracellular matrix domains ensheath cone photoreceptors in vertebrate retinae.
    Johnson LV; Hageman GS; Blanks JC
    Prog Clin Biol Res; 1985; 190():33-44. PubMed ID: 3931096
    [No Abstract]   [Full Text] [Related]  

  • 9. Structure of photoreceptive membranes of Drosophila compound eyes as studied by quick-freezing electron microscopy.
    Suzuki E; Katayama E; Hirosawa K
    J Electron Microsc (Tokyo); 1993 Jun; 42(3):178-84. PubMed ID: 8376923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The supramolecular organization of the keratinocyte cytoskeleton and extracellular matrix in human skin revealed by freezing-deep etching with rotary platinum-carbon shadow-casting].
    Popov VI; Voronkov VN
    Tsitologiia; 1990; 32(11):1078-83. PubMed ID: 2093242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional supramolecular organization of the extracellular matrix in human and rabbit corneal stroma, as revealed by ultrarapid-freezing and deep-etching methods.
    Hirsch M; Prenant G; Renard G
    Exp Eye Res; 2001 Feb; 72(2):123-35. PubMed ID: 11161728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreceptor layer composition in the retina of the frog (Rana esculenta).
    Reichenbach A; Fuchs U
    Gegenbaurs Morphol Jahrb; 1983; 129(3):299-305. PubMed ID: 6603996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and fate of interphotoreceptor matrix components during dysplastic photoreceptor differentiation: a lectin cytochemical study of rod-cone dysplasia 1.
    Mieziewska K; Van Veen T; Aguirre GD
    Exp Eye Res; 1993 Apr; 56(4):429-41. PubMed ID: 8500556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redistribution of insoluble interphotoreceptor matrix components during photoreceptor differentiation in the mouse retina.
    Mieziewska K; Szél A; Van Veen T; Aguirre GD; Philp N
    J Comp Neurol; 1994 Jul; 345(1):115-24. PubMed ID: 8089273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopy of the mouse retina prepared by freeze-substitution.
    Van Harreveld A; Khattab FI
    Anat Rec; 1968 May; 161(1):125-39. PubMed ID: 5664080
    [No Abstract]   [Full Text] [Related]  

  • 16. The structural organization of calf retinal photoreceptors derived from freeze-fracture study.
    Olive J; Lucio Benedetti E
    Mol Biol Rep; 1974 Feb; 1(5):245-9. PubMed ID: 4607257
    [No Abstract]   [Full Text] [Related]  

  • 17. Rat retinal rods: freeze-fracture replication of outer segments.
    Leeson TS
    Can J Ophthalmol; 1970 Jan; 5(1):91-107. PubMed ID: 4911373
    [No Abstract]   [Full Text] [Related]  

  • 18. Improved preservation of the subepidermal extracellular matrix in axolotl embryos using electron microscopical techniques based on cryoimmobilization.
    Epperlein HH; Schwarz H; Piendl T; Löfberg J; Studer D; Spring H; Müller M
    J Struct Biol; 1997 Feb; 118(1):43-61. PubMed ID: 9087914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sea urchin egg jelly coat is a three-dimensional fibrous network as seen by intermediate voltage electron microscopy and deep etching analysis.
    Bonnell BS; Larabell C; Chandler DE
    Mol Reprod Dev; 1993 Jun; 35(2):181-8. PubMed ID: 8318223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry.
    Li ZY; Jacobson SG; Milam AH
    Exp Eye Res; 1994 Apr; 58(4):397-408. PubMed ID: 7925677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.