These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Power requirements of swimming: do new methods resolve old questions? Schultz WW; Webb PW Integr Comp Biol; 2002 Nov; 42(5):1018-25. PubMed ID: 21680383 [TBL] [Abstract][Full Text] [Related]
43. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats. Ender H; Kierfeld J Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288 [TBL] [Abstract][Full Text] [Related]
45. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives. Takagi H; Nakashima M; Sengoku Y; Tsunokawa T; Koga D; Narita K; Kudo S; Sanders R; Gonjo T Sports Biomech; 2023 Dec; 22(12):1552-1571. PubMed ID: 34423742 [TBL] [Abstract][Full Text] [Related]
46. The mesoscopic collective motion of self-propelling active particle suspension confined in two-dimensional micro-channel. Cai SC; Shen YX; Io CW J Phys Condens Matter; 2020 Feb; 32(9):095101. PubMed ID: 31722320 [TBL] [Abstract][Full Text] [Related]
47. Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer. Sabass B; Seifert U J Chem Phys; 2012 Feb; 136(6):064508. PubMed ID: 22360196 [TBL] [Abstract][Full Text] [Related]
48. Bacteria-inspired magnetically actuated rod-like soft robot in viscous fluids. Bhattacharjee A; Jabbarzadeh M; Kararsiz G; Fu HC; Kim MJ Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35926485 [TBL] [Abstract][Full Text] [Related]
49. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. Herschlag G; Miller L J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208 [TBL] [Abstract][Full Text] [Related]
50. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls. Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374 [TBL] [Abstract][Full Text] [Related]
53. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer. Peng J; Alben S Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408 [TBL] [Abstract][Full Text] [Related]
54. Diffusivity of E. coli-like microswimmers in confined geometries: The role of the tumbling rate. Guccione G; Pimponi D; Gualtieri P; Chinappi M Phys Rev E; 2017 Oct; 96(4-1):042603. PubMed ID: 29347505 [TBL] [Abstract][Full Text] [Related]
55. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors. Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690 [TBL] [Abstract][Full Text] [Related]
56. Swimming speeds of filaments in viscous fluids with resistance. Ho N; Olson SD; Leiderman K Phys Rev E; 2016 Apr; 93():043108. PubMed ID: 27176391 [TBL] [Abstract][Full Text] [Related]
57. Propulsion of a Two-Sphere Swimmer. Klotsa D; Baldwin KA; Hill RJ; Bowley RM; Swift MR Phys Rev Lett; 2015 Dec; 115(24):248102. PubMed ID: 26705658 [TBL] [Abstract][Full Text] [Related]
58. Optimal specific wavelength for maximum thrust production in undulatory propulsion. Nangia N; Bale R; Chen N; Hanna Y; Patankar NA PLoS One; 2017; 12(6):e0179727. PubMed ID: 28654649 [TBL] [Abstract][Full Text] [Related]
59. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae). Ngo V; McHenry MJ J Exp Biol; 2014 Aug; 217(Pt 15):2740-51. PubMed ID: 24855668 [TBL] [Abstract][Full Text] [Related]