BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38766065)

  • 1. Interplay of condensate material properties and chromatin heterogeneity governs nuclear condensate ripening.
    Banerjee DS; Chigumira T; Lackner RM; Kratz JC; Chenoweth DM; Banerjee S; Zhang H
    bioRxiv; 2024 May; ():. PubMed ID: 38766065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous elasticity drives ripening and controls bursting kinetics of transcriptional condensates.
    Meng L; Mao S; Lin J
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2316610121. PubMed ID: 38489385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Polyhomeotic Condensates by Intrinsically Disordered Sequences That Affect Chromatin Binding.
    Kapur I; Boulier EL; Francis NJ
    Epigenomes; 2022 Nov; 6(4):. PubMed ID: 36412795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-induced crosslinking of a biomolecular condensate.
    Coupe S; Fakhri N
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient crosslinking controls the condensate formation pathway within chromatin networks.
    Wu ZP; Bloom KS; Forest MG; Cao XZ
    Phys Rev E; 2024 Apr; 109(4):L042401. PubMed ID: 38755828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global control of cellular physiology by biomolecular condensates through modulation of electrochemical equilibria.
    Dai Y; Zhou Z; Kim K; Rivera N; Mohammed J; Hsu-Kim H; Chilkoti A; You L
    bioRxiv; 2023 Oct; ():. PubMed ID: 37904914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization.
    Liu X; Jiang S; Ma L; Qu J; Zhao L; Zhu X; Ding J
    Genome Biol; 2021 Aug; 22(1):230. PubMed ID: 34404453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface tension measurement and calculation of model biomolecular condensates.
    Holland J; Castrejón-Pita AA; Tuinier R; Aarts DGAL; Nott TJ
    Soft Matter; 2023 Nov; 19(45):8706-8716. PubMed ID: 37791635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular Condensates in the Nucleus.
    Sabari BR; Dall'Agnese A; Young RA
    Trends Biochem Sci; 2020 Nov; 45(11):961-977. PubMed ID: 32684431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for characterizing the material properties of biomolecular condensates.
    Alshareedah I; Kaur T; Banerjee PR
    Methods Enzymol; 2021; 646():143-183. PubMed ID: 33453924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions.
    Lee M; Moon HC; Jeong H; Kim DW; Park HY; Shin Y
    Nat Commun; 2024 Apr; 15(1):3216. PubMed ID: 38622120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Frustration of Phase Separation in the Cell Nucleus by Chromatin.
    Zhang Y; Lee DSW; Meir Y; Brangwynne CP; Wingreen NS
    Phys Rev Lett; 2021 Jun; 126(25):258102. PubMed ID: 34241518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation.
    Tatavosian R; Kent S; Brown K; Yao T; Duc HN; Huynh TN; Zhen CY; Ma B; Wang H; Ren X
    J Biol Chem; 2019 Feb; 294(5):1451-1463. PubMed ID: 30514760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of viscoelasticity and flow activation energy in biomolecular condensates.
    Alshareedah I; Singh A; Yang S; Ramachandran V; Quinn A; Potoyan DA; Banerjee PR
    Sci Adv; 2024 Feb; 10(7):eadi6539. PubMed ID: 38363841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of condensation and chromatin binding underlies BRD4 targeting.
    Strom AR; Eeftens JM; Polyachenko Y; Weaver CJ; Watanabe HF; Bracha D; Orlovsky ND; Jumper CC; Jacobs WM; Brangwynne CP
    Mol Biol Cell; 2024 Jun; 35(6):ar88. PubMed ID: 38656803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis.
    Emenecker RJ; Holehouse AS; Strader LC
    Cell Commun Signal; 2021 Jun; 19(1):65. PubMed ID: 34090478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Surface Passivation for High-Sensitivity Studies of Biomolecular Condensates.
    Yao RW; Rosen MK
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.