These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38766188)
1. Structural and biochemical characterization of LIG1 during mutagenic nick sealing of oxidatively damaged ends at the final step of DNA repair. Balu KE; Almohdar D; Ratcliffe J; Tang Q; Parwal T; Çağlayan M bioRxiv; 2024 May; ():. PubMed ID: 38766188 [TBL] [Abstract][Full Text] [Related]
2. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair. Tang Q; Gulkis M; McKenna R; Çağlayan M Nat Commun; 2022 Jul; 13(1):3860. PubMed ID: 35790757 [TBL] [Abstract][Full Text] [Related]
3. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps. Almohdar D; Murcia D; Tang Q; Ortiz A; Martinez E; Parwal T; Kamble P; Çağlayan M J Biol Chem; 2024 Jun; 300(6):107355. PubMed ID: 38718860 [TBL] [Abstract][Full Text] [Related]
4. Mutagenic ligation of polβ mismatch insertion products during 8-oxoG bypass by LIG1 and LIG3α at the downstream steps of base excision repair pathway. Lee KM; Castro E; Ratcliffe JE; Çağlayan M bioRxiv; 2024 Oct; ():. PubMed ID: 39484546 [TBL] [Abstract][Full Text] [Related]
5. Impact of DNA ligase inhibition on the nick sealing of polβ nucleotide insertion products at the downstream steps of base excision repair pathway. Almohdar D; Kamble P; Basavannacharya C; Gulkis M; Calbay O; Huang S; Narayan S; Çağlayan M Mutagenesis; 2024 Nov; 39(6):263-279. PubMed ID: 38736258 [TBL] [Abstract][Full Text] [Related]
6. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway. Gulkis M; Martinez E; Almohdar D; Çağlayan M Nucleic Acids Res; 2024 Apr; 52(7):3810-3822. PubMed ID: 38366780 [TBL] [Abstract][Full Text] [Related]
7. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair. Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M J Biol Chem; 2021; 296():100427. PubMed ID: 33600799 [TBL] [Abstract][Full Text] [Related]
8. Structures of LIG1 provide a mechanistic basis for understanding a lack of sugar discrimination against a ribonucleotide at the 3'-end of nick DNA. Balu KE; Gulkis M; Almohdar D; Çağlayan M J Biol Chem; 2024 May; 300(5):107216. PubMed ID: 38522520 [TBL] [Abstract][Full Text] [Related]
9. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination. Gulkis M; Tang Q; Petrides M; Çağlayan M Res Sq; 2023 Apr; ():. PubMed ID: 37090517 [TBL] [Abstract][Full Text] [Related]
10. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination. Gulkis M; Tang Q; Petrides M; Çağlayan M bioRxiv; 2023 Mar; ():. PubMed ID: 36993234 [TBL] [Abstract][Full Text] [Related]
11. Structures of LIG1 uncover the mechanism of sugar discrimination against 5'-RNA-DNA junctions during ribonucleotide excision repair. Balu KE; Tang Q; Almohdar D; Ratcliffe J; Kalaycioğlu M; Çağlayan M J Biol Chem; 2024 Sep; 300(9):107688. PubMed ID: 39159820 [TBL] [Abstract][Full Text] [Related]
12. The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair. Tang Q; Çağlayan M J Biol Chem; 2021 Sep; 297(3):101025. PubMed ID: 34339737 [TBL] [Abstract][Full Text] [Related]
13. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway. Almohdar D; Gulkis M; Ortiz A; Tang Q; Sobol RW; Çağlayan M J Mol Biol; 2024 Feb; 436(4):168410. PubMed ID: 38135179 [TBL] [Abstract][Full Text] [Related]
15. Uncovering nick DNA binding by LIG1 at the single-molecule level. Chatterjee S; Chaubet L; van den Berg A; Mukhortava A; Gulkis M; Çağlayan M bioRxiv; 2024 Mar; ():. PubMed ID: 38586032 [TBL] [Abstract][Full Text] [Related]
16. DNA ligase I variants fail in the ligation of mutagenic repair intermediates with mismatches and oxidative DNA damage. Tang Q; Kamble P; Çağlayan M Mutagenesis; 2020 Dec; 35(5):391-404. PubMed ID: 32914844 [TBL] [Abstract][Full Text] [Related]
17. A chemical and kinetic perspective on base excision repair of DNA. Schermerhorn KM; Delaney S Acc Chem Res; 2014 Apr; 47(4):1238-46. PubMed ID: 24646203 [TBL] [Abstract][Full Text] [Related]
18. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. Córdoba-Cañero D; Roldán-Arjona T; Ariza RR Plant J; 2011 Nov; 68(4):693-702. PubMed ID: 21781197 [TBL] [Abstract][Full Text] [Related]
19. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. Srivastava DK; Berg BJ; Prasad R; Molina JT; Beard WA; Tomkinson AE; Wilson SH J Biol Chem; 1998 Aug; 273(33):21203-9. PubMed ID: 9694877 [TBL] [Abstract][Full Text] [Related]
20. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III. Arakawa H; Iliakis G Genes (Basel); 2015 Jun; 6(2):385-98. PubMed ID: 26110316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]