These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3876637)

  • 1. Changes in ultrasonic attenuation and backscatter of muscle with state of contraction.
    Glueck RM; Mottley JG; Sobel BE; Miller JG; Pérez JE
    Ultrasound Med Biol; 1985; 11(4):605-10. PubMed ID: 3876637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcomere length dependence of muscle stiffness changes during contraction recorded using ultrasonic waves.
    Tamura Y; Hatta I; Sugi H
    Adv Exp Med Biol; 1988; 226():541-51. PubMed ID: 3261493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional differences in the cyclic variation of myocardial backscatter that parallel regional differences in contractile performance.
    Mottley JG; Glueck RM; Perez JE; Sobel BE; Miller JG
    J Acoust Soc Am; 1984 Dec; 76(6):1617-23. PubMed ID: 6520299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of attenuation on measurements of ultrasonic myocardial integrated backscatter during cardiac cycle (an in vitro study).
    van der Steen AF; Rijsterborgh H; Mastik F; Lancée CT; van Hoorn WM; Bom N
    Ultrasound Med Biol; 1991; 17(9):869-77. PubMed ID: 1805478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stiffness changes in frog skeletal muscle during contraction recorded using ultrasonic waves.
    Hatta I; Sugi H; Tamura Y
    J Physiol; 1988 Sep; 403():193-209. PubMed ID: 3075667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle stiffness changes during isometric contraction in frog skeletal muscle as studied by the use of ultrasonic waves.
    Hatta I; Tamura Y; Matsuda T; Sugi H; Tsuchiya T
    Adv Exp Med Biol; 1984; 170():673-86. PubMed ID: 6611039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation of ultrasonic backscatter and acoustic propagation properties to myofibrillar length and myocardial thickness.
    O'Brien PD; O'Brien WD; Rhyne TL; Warltier DC; Sagar KB
    Circulation; 1995 Jan; 91(1):171-5. PubMed ID: 7805199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of human myocardial infarction in vitro based on the frequency dependence of ultrasonic backscatter.
    Wickline SA; Verdonk ED; Sobel BE; Miller JG
    J Acoust Soc Am; 1992 May; 91(5):3018-25. PubMed ID: 1629493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the acoustic properties of a nerve-muscle preparation as a function of physiologic state.
    Bhagat P; Hajjar W; Kadaba M
    Ultrasonics; 1976 Nov; 14(6):283-5. PubMed ID: 996975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation of ultrasound in skeletal muscle.
    Nassiri DK; Nicholas D; Hill CR
    Ultrasonics; 1979 Sep; 17(5):230-2. PubMed ID: 573006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of coronary artery occlusion and reperfusion on cardiac cycle-dependent variation of myocardial ultrasonic backscatter.
    Glueck RM; Mottley JG; Miller JG; Sobel BE; Pérez JE
    Circ Res; 1985 May; 56(5):683-9. PubMed ID: 3888435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in myocardial backscatter throughout the cardiac cycle.
    Madaras EI; Barzilai B; Perez JE; Sobel BE; Miller JG
    Ultrason Imaging; 1983 Jul; 5(3):229-39. PubMed ID: 6685368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound Measurement of Skeletal Muscle Contractile Parameters Using Flexible and Wearable Single-Element Ultrasonic Sensor.
    AlMohimeed I; Ono Y
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32605006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further studies on ultrasonic properties of blood clots.
    Shung KK; Fei DY; Ballard JO
    J Clin Ultrasound; 1986 May; 14(4):269-75. PubMed ID: 3084583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation of ultrasonic tissue characterization with integrated backscatter to contractile reserve in chronic left ventricular ischemic dysfunction.
    Pasquet A; D'Hondt AM; Melin JA; Vanoverschelde JL
    Am J Cardiol; 1998 Jan; 81(1):68-74. PubMed ID: 9462609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency backscatter and attenuation measurements of selected bovine tissues between 10 and 30 MHz.
    Maruvada S; Shung KK; Wang SH
    Ultrasound Med Biol; 2000 Jul; 26(6):1043-9. PubMed ID: 10996704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dynamics of frog muscle during isometric contraction.
    Bonner RF; Carlson FD
    J Gen Physiol; 1975 May; 65(5):555-81. PubMed ID: 1080795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dependence of myocardial ultrasonic integrated backscatter on contractile performance.
    Wickline SA; Thomas LJ; Miller JG; Sobel BE; Pérez JE
    Circulation; 1985 Jul; 72(1):183-92. PubMed ID: 3891129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential relationships among myocardial stiffness, the measured level of myocardial backscatter ("image brightness"), and the magnitude of the systematic variation of backscatter (cyclic variation) over the heart cycle.
    Holland MR; Wallace KD; Miller JG
    J Am Soc Echocardiogr; 2004 Nov; 17(11):1131-7. PubMed ID: 15502786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved 31P nuclear magnetic resonance studies on isometric contraction of frog skeletal muscle.
    Yamada K; Tanokura M; Kawano Y; Kitano T
    Adv Exp Med Biol; 1988; 226():425-32. PubMed ID: 3261489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.