These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38766515)

  • 1. Solid polymer electrolyte-based atomic switches: from materials to mechanisms and applications.
    Tsuruoka T; Terabe K
    Sci Technol Adv Mater; 2024; 25(1):2342772. PubMed ID: 38766515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistive Switching Memristor: On the Direct Observation of Physical Nature of Parameter Variability.
    Wang Z; Xiao W; Yang H; Zhang S; Zhang Y; Sun K; Wang T; Fu Y; Wang Q; Zhang J; Hasegawa T; He D
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1557-1567. PubMed ID: 34957821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal doped polyaniline as neuromorphic circuit elements for in-materia computing.
    Higuchi R; Lilak S; Sillin HO; Tsuruoka T; Kunitake M; Nakayama T; Gimzewski JK; Stieg AZ
    Sci Technol Adv Mater; 2023; 24(1):2178815. PubMed ID: 36872943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly-4-vinylphenol (PVP) and Poly(melamine-co-formaldehyde) (PMF)-Based Atomic Switching Device and Its Application to Logic Gate Circuits with Low Operating Voltage.
    Kang DH; Choi WY; Woo H; Jang S; Park HY; Shim J; Choi JW; Kim S; Jeon S; Lee S; Park JH
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27073-27082. PubMed ID: 28777534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging Robust Polymer Materials for High-Performance Two-Terminal Resistive Switching Memory.
    Li B; Zhang S; Xu L; Su Q; Du B
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices.
    Krishnan K; Aono M; Tsuruoka T
    Nanoscale; 2016 Aug; 8(29):13976-84. PubMed ID: 27109426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of nanomaterials in two-terminal resistive-switching memory devices.
    Ouyang J
    Nano Rev; 2010; 1():. PubMed ID: 22110862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistive Memory Devices at the Thinnest Limit: Progress and Challenges.
    Li XD; Chen NK; Wang BQ; Niu M; Xu M; Miao X; Li XB
    Adv Mater; 2024 Apr; 36(15):e2307951. PubMed ID: 38197585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excellent Resistive Switching Performance of Cu-Se-Based Atomic Switch Using Lanthanide Metal Nanolayer at the Cu-Se/Al
    Woo H; Vishwanath SK; Jeon S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8124-8131. PubMed ID: 29441789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configurable switching behavior in polymer-based resistive memories by adopting unique electrode/electrolyte arrangement.
    Krishnan K; Tauquir SM; Vijayaraghavan S; Mohan R
    RSC Adv; 2021 Jul; 11(38):23400-23408. PubMed ID: 35479807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic switches: atomic-movement-controlled nanodevices for new types of computing.
    Hino T; Hasegawa T; Terabe K; Tsuruoka T; Nayak A; Ohno T; Aono M
    Sci Technol Adv Mater; 2011 Feb; 12(1):013003. PubMed ID: 27877376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.
    Hasegawa T; Terabe K; Tsuruoka T; Aono M
    Adv Mater; 2012 Jan; 24(2):252-67. PubMed ID: 21989741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance bi-layer atomic switching devices.
    Ju JH; Jang SK; Son H; Park JH; Lee S
    Nanoscale; 2017 Jun; 9(24):8373-8379. PubMed ID: 28594423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanobatteries in redox-based resistive switches require extension of memristor theory.
    Valov I; Linn E; Tappertzhofen S; Schmelzer S; van den Hurk J; Lentz F; Waser R
    Nat Commun; 2013; 4():1771. PubMed ID: 23612312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of Electrochemically Synthesized Resistive Switching Devices: Memory Storage, Neuromorphic Computing, and Sensing Applications.
    Kundale SS; Kamble GU; Patil PP; Patil SL; Rokade KA; Khot AC; Nirmal KA; Kamat RK; Kim KH; An HM; Dongale TD; Kim TG
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.
    Younis A; Chu D; Shah AH; Du H; Li S
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1585-1592. PubMed ID: 27958711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding the metallic bridging dynamics in nanogap atomic switches.
    Ji X; Pang KY; Zhao R
    Nanoscale; 2019 Nov; 11(46):22446-22455. PubMed ID: 31746896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistive switching memory based on bioinspired natural solid polymer electrolytes.
    Raeis Hosseini N; Lee JS
    ACS Nano; 2015 Jan; 9(1):419-26. PubMed ID: 25513838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous Boron Nitride Memristive Device for High-Density Memory and Neuromorphic Computing Applications.
    Khot AC; Dongale TD; Nirmal KA; Sung JH; Lee HJ; Nikam RD; Kim TG
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10546-10557. PubMed ID: 35179364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications.
    Milano G; Aono M; Boarino L; Celano U; Hasegawa T; Kozicki M; Majumdar S; Menghini M; Miranda E; Ricciardi C; Tappertzhofen S; Terabe K; Valov I
    Adv Mater; 2022 Aug; 34(32):e2201248. PubMed ID: 35404522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.