These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38767259)

  • 21. Nonisothermal gravitational segregation by molecular dynamics simulations.
    Galliéro G; Montel F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041203. PubMed ID: 18999408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate.
    Horsch M; Vrabec J; Hasse H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011603. PubMed ID: 18763964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density functional theory of inhomogeneous liquids. III. Liquid-vapor nucleation.
    Lutsko JF
    J Chem Phys; 2008 Dec; 129(24):244501. PubMed ID: 19123511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of liquid clusters in large-scale molecular dynamics nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    J Chem Phys; 2014 Feb; 140(7):074303. PubMed ID: 24559349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic analysis of homogeneous droplet nucleation using large-scale molecular dynamics simulations.
    Ayuba S; Suh D; Nomura K; Ebisuzaki T; Yasuoka K
    J Chem Phys; 2018 Jul; 149(4):044504. PubMed ID: 30068205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal fluctuations of clusters with the long-range interaction.
    Zhukhovitskii DI
    J Chem Phys; 2011 Jul; 135(4):044512. PubMed ID: 21806143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of thermostats and carrier gas on simulations of nucleation.
    Wedekind J; Reguera D; Strey R
    J Chem Phys; 2007 Aug; 127(6):064501. PubMed ID: 17705606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comprehensive modeling approach for polymorph selection in Lennard-Jones crystallization.
    Bulutoglu PS; Zalte AS; Nere NK; Ramkrishna D; Corti DS
    J Chem Phys; 2023 Apr; 158(13):134505. PubMed ID: 37031149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large scale molecular dynamics simulations of homogeneous nucleation.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    J Chem Phys; 2013 Aug; 139(7):074309. PubMed ID: 23968094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A thermodynamically consistent determination of surface tension of small Lennard-Jones clusters from simulation and theory.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2010 Jul; 133(4):044704. PubMed ID: 20687673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of the nucleation of water: determining the sticking probability and formation energy of a cluster.
    Tanaka KK; Kawano A; Tanaka H
    J Chem Phys; 2014 Mar; 140(11):114302. PubMed ID: 24655175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of nearest-neighbor drops in the kinetics of homogeneous nucleation in a supersaturated vapor.
    Grinin AP; Zhuvikina IA; Kuni FM; Reiss H
    J Chem Phys; 2004 Dec; 121(24):12490-8. PubMed ID: 15606270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active-matter isomorphs in the size-polydisperse Ornstein-Uhlenbeck Lennard-Jones model.
    Jespersen D; Costigliola L; Dyre JC; Saw S
    J Phys Condens Matter; 2023 Aug; 35(44):. PubMed ID: 37534798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spontaneous Crystallization of a Supercooled Lennard-Jones Liquid: Molecular Dynamics Simulation.
    Baidakov VG; Protsenko KR
    J Phys Chem B; 2019 Sep; 123(38):8103-8112. PubMed ID: 31483996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spherical seed mediated vapor condensation of Lennard-Jones fluid: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2013 Aug; 139(5):054702. PubMed ID: 23927276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seeding approach to bubble nucleation in superheated Lennard-Jones fluids.
    Rosales-Pelaez P; Garcia-Cid MI; Valeriani C; Vega C; Sanz E
    Phys Rev E; 2019 Nov; 100(5-1):052609. PubMed ID: 31869963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics analysis of multiple site growth and coalescence effects on homogeneous and heterogeneous nucleations.
    Suh D; Yoon W; Shibahara M; Jung S
    J Chem Phys; 2008 Apr; 128(15):154523. PubMed ID: 18433251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular-dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble.
    Kraska T
    J Chem Phys; 2006 Feb; 124(5):054507. PubMed ID: 16468894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.