These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38767712)
41. Adaptation of land-use demands to the impact of climate change on the hydrological processes of an urbanized watershed. Lin YP; Hong NM; Chiang LC; Liu YL; Chu HJ Int J Environ Res Public Health; 2012 Nov; 9(11):4083-102. PubMed ID: 23202833 [TBL] [Abstract][Full Text] [Related]
42. Large-stream nitrate retention patterns shift during droughts: Seasonal to sub-daily insights from high-frequency data-model fusion. Yang X; Zhang X; Graeber D; Hensley R; Jarvie H; Lorke A; Borchardt D; Li Q; Rode M Water Res; 2023 Sep; 243():120347. PubMed ID: 37490830 [TBL] [Abstract][Full Text] [Related]
43. Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought. Magoulick DD; Dekar MP; Hodges SW; Scott MK; Rabalais MR; Bare CM Sci Rep; 2021 May; 11(1):10704. PubMed ID: 34021176 [TBL] [Abstract][Full Text] [Related]
44. Origin and formation mechanism of salty water in Zuli River catchment of the Yellow River. Liu Z; Tan H; Shi D; Xu P; Elenga HI Water Environ Res; 2019 Mar; 91(3):222-238. PubMed ID: 30698893 [TBL] [Abstract][Full Text] [Related]
45. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Mas-Pla J; Menció A Environ Sci Pollut Res Int; 2019 Jan; 26(3):2184-2202. PubMed ID: 29644604 [TBL] [Abstract][Full Text] [Related]
46. From mountains to cities: a novel isotope hydrological assessment of a tropical water distribution system. Sánchez-Murillo R; Esquivel-Hernández G; Birkel C; Ortega L; Sánchez-Guerrero M; Rojas-Jiménez LD; Vargas-Víquez J; Castro-Chacón L Isotopes Environ Health Stud; 2020; 56(5-6):606-623. PubMed ID: 32835532 [TBL] [Abstract][Full Text] [Related]
47. Modeling the fate of organic micropollutants during river bank filtration (Berlin, Germany). Henzler AF; Greskowiak J; Massmann G J Contam Hydrol; 2014 Jan; 156():78-92. PubMed ID: 24270159 [TBL] [Abstract][Full Text] [Related]
48. On the utilization of hydrological modelling for road drainage design under climate and land use change. Kalantari Z; Briel A; Lyon SW; Olofsson B; Folkeson L Sci Total Environ; 2014 Mar; 475():97-103. PubMed ID: 24480630 [TBL] [Abstract][Full Text] [Related]
49. Stream macroinvertebrate communities in restored and impacted catchments respond differently to climate, land-use, and runoff over a decade. Nguyen HH; Peters K; Kiesel J; Welti EAR; Gillmann SM; Lorenz AW; Jähnig SC; Haase P Sci Total Environ; 2024 Jun; 929():172659. PubMed ID: 38657809 [TBL] [Abstract][Full Text] [Related]
50. Hillslope groundwater and river channel precipitation recharge to rivers in a continuous permafrost catchment of northeastern Tibetan Plateau. Xie S; Zeng C; Xiao X; Wang G; Zhang F Sci Total Environ; 2024 Jan; 906():167725. PubMed ID: 37832677 [TBL] [Abstract][Full Text] [Related]
51. Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale. Zölch T; Henze L; Keilholz P; Pauleit S Environ Res; 2017 Aug; 157():135-144. PubMed ID: 28558261 [TBL] [Abstract][Full Text] [Related]
52. Green infrastructure drainage of a commercial plaza without directly connected impervious areas: a case study. Rujner H; Leonhardt G; Flanagan K; Marsalek J; Viklander M Water Sci Technol; 2022 Dec; 86(11):2777-2793. PubMed ID: 36515188 [TBL] [Abstract][Full Text] [Related]
53. Catchment-Wide Groundwater Budget for the Inkomati-Usuthu Water Management Area in South Africa. Shakhane T; Mojabake M Ground Water; 2024; 62(3):480-493. PubMed ID: 38511862 [TBL] [Abstract][Full Text] [Related]
54. Use of isotope hydrology in groundwater conceptualization for modeling flow and contaminant transport at northwestern Sinai, Egypt. Hagagg KH; Sadek MA; Mohamed FA; El-Shahat MF Environ Monit Assess; 2018 Nov; 190(12):745. PubMed ID: 30470947 [TBL] [Abstract][Full Text] [Related]
55. An ecohydrologic model for a shallow groundwater urban environment. Arden S; Ma XC; Brown M Water Sci Technol; 2014; 70(11):1789-97. PubMed ID: 25500468 [TBL] [Abstract][Full Text] [Related]
56. Assessing current and future available resources to supply urban water demands using a high-resolution SWAT model coupled with recurrent neural networks and validated through the SIMPA model in karstic Mediterranean environments. Jodar-Abellan A; Pardo MÁ; Asadollah SBHS; Bailey RT Environ Sci Pollut Res Int; 2024 Aug; 31(36):49116-49140. PubMed ID: 39046638 [TBL] [Abstract][Full Text] [Related]
57. Drought impacts on hydrology and water quality under climate change. Qiu J; Shen Z; Xie H Sci Total Environ; 2023 Feb; 858(Pt 1):159854. PubMed ID: 36461570 [TBL] [Abstract][Full Text] [Related]
58. Characterization of runoff from various urban catchments at different spatial scales in Beijing, China. Zhang W; Che W; Liu DK; Gan YP; Lv FF Water Sci Technol; 2012; 66(1):21-7. PubMed ID: 22678196 [TBL] [Abstract][Full Text] [Related]
59. Individual and combined impacts of urbanization and climate change on catchment runoff in Southeast Queensland, Australia. Ramezani MR; Helfer F; Yu B Sci Total Environ; 2023 Feb; 861():160528. PubMed ID: 36470390 [TBL] [Abstract][Full Text] [Related]
60. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. Sun Z; Lotz T; Chang NB J Environ Manage; 2017 Dec; 204(Pt 1):92-101. PubMed ID: 28863340 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]