These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38767856)

  • 21. Cobalt-Nickel Layered Double Hydroxides Modified on TiO
    Chen W; Wang T; Xue J; Li S; Wang Z; Sun S
    Small; 2017 Mar; 13(10):. PubMed ID: 28026124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C@SiNW/TiO2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting.
    Devarapalli RR; Debgupta J; Pillai VK; Shelke MV
    Sci Rep; 2014 May; 4():4897. PubMed ID: 24810865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering Directional Charge Carrier Transport Using Ferroelectric Polarization for Enhanced Photoelectrochemical Water Oxidation.
    Xu Q; Berardan D; Brisset F; Colbeau-Justin C; Ghazzal MN
    Small; 2024 Jun; 20(23):e2308750. PubMed ID: 38200680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial Charge Transport in 1D TiO
    Yu Z; Liu H; Zhu M; Li Y; Li W
    Small; 2021 Mar; 17(9):e1903378. PubMed ID: 31657147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO
    Wu F; Yu Y; Yang H; German LN; Li Z; Chen J; Yang W; Huang L; Shi W; Wang L; Wang X
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28558165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction.
    Yan P; Liu G; Ding C; Han H; Shi J; Gan Y; Li C
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3791-6. PubMed ID: 25621529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoelectrochemical properties of MOF-induced surface-modified TiO
    Jiao W; Zhu J; Ling Y; Deng M; Zhou Y; Feng P
    Nanoscale; 2018 Nov; 10(43):20339-20346. PubMed ID: 30375612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface plasmon-driven photoelectrochemical water splitting of a Ag/TiO
    Peerakiatkhajohn P; Yun JH; Butburee T; Nisspa W; Thaweesak S
    RSC Adv; 2022 Jan; 12(5):2652-2661. PubMed ID: 35425299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An effective strategy for promoting charge separation by integrating heterojunctions and multiple homojunctions in TiO
    Si H; Zou L; Huang G; Liao J; Lin S
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):888-900. PubMed ID: 36306600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TiO
    Moridon SNF; Arifin K; Mohamed MA; Minggu LJ; Mohamad Yunus R; Kassim MB
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogenated TiO
    Meng M; Zhou S; Yang L; Gan Z; Liu K; Tian F; Zhu Y; Li C; Liu W; Yuan H; Zhang Y
    Nanotechnology; 2018 Apr; 29(15):155401. PubMed ID: 29372889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced photoelectrochemical performance of NiS-modified TiO
    Yang S; Wang B; Zhao R; Wei L; Su J
    Dalton Trans; 2023 Nov; 52(44):16442-16450. PubMed ID: 37872811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TiO
    Mahadik MA; Anushkkaran P; Chae WS; Lee HH; Cho M; Jang JS
    Chemosphere; 2023 Nov; 341():139968. PubMed ID: 37643649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of the TiO
    Fan X; Wang T; Gao B; Gong H; Xue H; Guo H; Song L; Xia W; Huang X; He J
    Langmuir; 2016 Dec; 32(50):13322-13332. PubMed ID: 27936327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembly of Copper Phthalocyanine on TiO
    Li Y; Yang M; Tian Z; Luo N; Li Y; Zhang H; Zhou A; Xiong S
    Front Chem; 2019; 7():334. PubMed ID: 31157207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifying the Electron-Trapping Process at the BiVO
    Usman E; Barzgar Vishlaghi M; Kahraman A; Solati N; Kaya S
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60602-60611. PubMed ID: 34881879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Photoelectrochemical Water Oxidation Using TiO
    Thanh Thu CT; Jo HJ; Koyyada G; Kim DH; Kim JH
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-efficiency p-n junction oxide photoelectrodes for photoelectrochemical water splitting.
    Liu Z; Yan L
    Phys Chem Chem Phys; 2016 Nov; 18(45):31230-31237. PubMed ID: 27819107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.