These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38767913)

  • 41. Fenton chemistry at aqueous interfaces.
    Enami S; Sakamoto Y; Colussi AJ
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):623-8. PubMed ID: 24379389
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovery and exploitation of AZADO: the highly active catalyst for alcohol oxidation.
    Iwabuchi Y
    Chem Pharm Bull (Tokyo); 2013; 61(12):1197-213. PubMed ID: 24292782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp
    Portugués A; Martínez-Nortes MÁ; Bautista D; González-Herrero P; Gil-Rubio J
    Inorg Chem; 2023 Jan; 62(4):1708-1718. PubMed ID: 36658748
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-resolved kinetic study of the electron-transfer reactions between ring-substituted cumyloxyl radicals and alkylferrocenes. Evidence for an inner-sphere mechanism.
    Bietti M; DiLabio GA; Lanzalunga O; Salamone M
    J Org Chem; 2011 Mar; 76(6):1789-94. PubMed ID: 21344953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual-fixations of europium cations and TEMPO species on metal-organic frameworks for the aerobic oxidation of alcohols.
    Kim S; Lee J; Jeoung S; Moon HR; Kim M
    Dalton Trans; 2020 Jun; 49(24):8060-8066. PubMed ID: 32459224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rhodium-catalyzed C-H activation of phenacyl ammonium salts assisted by an oxidizing C-N bond: a combination of experimental and theoretical studies.
    Yu S; Liu S; Lan Y; Wan B; Li X
    J Am Chem Soc; 2015 Feb; 137(4):1623-31. PubMed ID: 25569022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Origin of Nitric Oxide Reduction Activity in Flavo-Diiron NO Reductase: Key Roles of the Second Coordination Sphere.
    Lu J; Bi B; Lai W; Chen H
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):3795-3799. PubMed ID: 30697895
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Harnessing redox-active ligands for low-barrier radical addition at oxorhenium complexes.
    Lippert CA; Hardcastle KI; Soper JD
    Inorg Chem; 2011 Oct; 50(20):9864-78. PubMed ID: 21744815
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Copper/TEMPO Redox Redux: Analysis of PCET Oxidation of TEMPOH by Copper(II) and the Reaction of TEMPO with Copper(I).
    Ryan MC; Whitmire LD; McCann SD; Stahl SS
    Inorg Chem; 2019 Aug; 58(15):10194-10200. PubMed ID: 31283193
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes.
    Meyer TJ; Huynh MH
    Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidative cross-coupling of thiols for S-X (X = S, N, O, P, and C) bond formation: mechanistic aspects.
    Jang HY
    Org Biomol Chem; 2021 Oct; 19(40):8656-8686. PubMed ID: 34596196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advances of transition-metal catalyzed radical oxidative cross-couplings.
    Liu C; Liu D; Lei A
    Acc Chem Res; 2014 Dec; 47(12):3459-70. PubMed ID: 25364854
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homoleptic tris(pyridyl pyrazolate) Ir(III) complexes: en route to highly efficient phosphorescent OLEDs.
    Chen K; Yang CH; Chi Y; Liu CS; Chang CH; Chen CC; Wu CC; Chung MW; Cheng YM; Lee GH; Chou PT
    Chemistry; 2010 Apr; 16(14):4315-27. PubMed ID: 20229532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coordination chemistry in the solid state: synthesis and interconversion of pyrazolium salts, pyrazole complexes, and pyrazolate MOFs.
    Adams CJ; Kurawa MA; Orpen AG
    Dalton Trans; 2010 Aug; 39(30):6974-84. PubMed ID: 20556305
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pyrrole-Based Ti(III) and Ti(IV) PNP Pincer Complexes: Insertion of Ketones into the Ti(IV)-Phosphorus Bond.
    Tomsu G; Stöger B; Kirchner K
    Organometallics; 2023 Oct; 42(20):2999-3004. PubMed ID: 37886626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of α-arylthioacetones using TEMPO as the C
    Zou JX; Jiang Y; Lei S; Yin GF; Hu XL; Zhao QY; Wang Z
    Org Biomol Chem; 2019 Feb; 17(9):2341-2345. PubMed ID: 30758028
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular and electronic structures of dinuclear iron complexes incorporating strongly electron-donating ligands: implications for the generation of the one- and two-electron oxidized forms.
    Strautmann JB; Freiherr von Richthofen CG; Heinze-Brückner G; DeBeer S; Bothe E; Bill E; Weyhermüller T; Stammler A; Bögge H; Glaser T
    Inorg Chem; 2011 Jan; 50(1):155-71. PubMed ID: 21114259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions.
    O'Hair RA; Rijs NJ
    Acc Chem Res; 2015 Feb; 48(2):329-40. PubMed ID: 25594228
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of chelating complexes through solid-state dehydrochlorination reactions via second-sphere-coordination interaction with metal chlorides: a combined experimental-molecular modeling study.
    Guan HY; Wang Z; Famulari A; Wang X; Guo F; Martí-Rujas J
    Inorg Chem; 2014 Jul; 53(14):7438-45. PubMed ID: 24959700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.