BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38767928)

  • 1. Biochemical, Bioinformatic, and Structural Comparisons of Transketolases and Position of Human Transketolase in the Enzyme Evolution.
    Georges RN; Ballut L; Aghajari N; Hecquet L; Charmantray F; Doumèche B
    Biochemistry; 2024 Jun; 63(11):1460-1473. PubMed ID: 38767928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determination and kinetic analysis of the transketolase from Vibrio vulnificus reveal unexpected cooperative behavior.
    Georges RN; Ballut L; Octobre G; Comte A; Hecquet L; Charmantray F; Doumèche B
    Protein Sci; 2024 Mar; 33(3):e4884. PubMed ID: 38145310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate.
    Lukacik P; Lobley CM; Bumann M; Arena de Souza V; Owens RJ; O'Toole PW; Walsh MA
    Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1327-34. PubMed ID: 26457526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase.
    Schenk G; Layfield R; Candy JM; Duggleby RG; Nixon PF
    J Mol Evol; 1997 May; 44(5):552-72. PubMed ID: 9115179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis.
    Schneider G; Lindqvist Y
    Biochim Biophys Acta; 1998 Jun; 1385(2):387-98. PubMed ID: 9655943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and properties of an engineered transketolase from maize.
    Gerhardt S; Echt S; Busch M; Freigang J; Auerbach G; Bader G; Martin WF; Bacher A; Huber R; Fischer M
    Plant Physiol; 2003 Aug; 132(4):1941-9. PubMed ID: 12913150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional nonequivalence of transketolase active centers.
    Kochetov GA; Sevostyanova IA
    IUBMB Life; 2010 Nov; 62(11):797-802. PubMed ID: 21117170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of plasmodial transketolases and identification of potential inhibitors: an in silico study.
    Boateng RA; Tastan Bishop Ö; Musyoka TM
    Malar J; 2020 Nov; 19(1):442. PubMed ID: 33256744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snapshot of a key intermediate in enzymatic thiamin catalysis: crystal structure of the alpha-carbanion of (alpha,beta-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae.
    Fiedler E; Thorell S; Sandalova T; Golbik R; König S; Schneider G
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):591-5. PubMed ID: 11773632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and characterization of Plasmodium falciparum transketolase.
    Joshi S; Singh AR; Kumar A; Misra PC; Siddiqi MI; Saxena JK
    Mol Biochem Parasitol; 2008 Jul; 160(1):32-41. PubMed ID: 18456347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role of arg433 in rat transketolase activity as probed by site-directed mutagenesis.
    Soh Y; Song BJ; Jeng J; Kallarakal AT
    Biochem J; 1998 Jul; 333 ( Pt 2)(Pt 2):367-72. PubMed ID: 9657977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus.
    Markert B; Stolzenberger J; Brautaset T; Wendisch VF
    BMC Microbiol; 2014 Jan; 14():7. PubMed ID: 24405865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human transketolase-like proteins TKTL1 and TKTL2 are bona fide transketolases.
    Deshpande GP; Patterton HG; Faadiel Essop M
    BMC Struct Biol; 2019 Jan; 19(1):2. PubMed ID: 30646877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.
    Meshalkina L; Nilsson U; Wikner C; Kostikowa T; Schneider G
    Eur J Biochem; 1997 Mar; 244(2):646-52. PubMed ID: 9119035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The modular structure of ThDP-dependent enzymes.
    Vogel C; Pleiss J
    Proteins; 2014 Oct; 82(10):2523-37. PubMed ID: 24888727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of an invariant cofactor-protein interaction in thiamin diphosphate-dependent enzymes by site-directed mutagenesis. Glutamic acid 418 in transketolase is essential for catalysis.
    Wikner C; Meshalkina L; Nilsson U; Nikkola M; Lindqvist Y; Sundström M; Schneider G
    J Biol Chem; 1994 Dec; 269(51):32144-50. PubMed ID: 7798210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on research progress of transketolase.
    Zhao J; Zhong CJ
    Neurosci Bull; 2009 Apr; 25(2):94-9. PubMed ID: 19290028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE; Tabita FR
    Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases.
    Zhao Z; Jin Q; Xu JR; Liu H
    PLoS One; 2014; 9(2):e89813. PubMed ID: 24587055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.