BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38768353)

  • 1. Curvature-mediated rapid extravasation and penetration of nanoparticles against interstitial fluid pressure for improved drug delivery.
    Jiang X; Xu S; Miao Y; Huang K; Wang B; Ding B; Zhang Z; Zhao Z; Zhang X; Shi X; Yu M; Tian F; Gan Y
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2319880121. PubMed ID: 38768353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed focused ultrasound lowers interstitial fluid pressure and increases nanoparticle delivery and penetration in head and neck squamous cell carcinoma xenograft tumors.
    Mohammadabadi A; Huynh RN; Wadajkar AS; Lapidus RG; Kim AJ; Raub CB; Frenkel V
    Phys Med Biol; 2020 Jun; 65(12):125017. PubMed ID: 32460260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation and Heat Improve the Delivery and Efficacy of Nanotherapeutics by Modulating Intratumoral Fluid Dynamics.
    Stapleton S; Dunne M; Milosevic M; Tran CW; Gold MJ; Vedadi A; Mckee TD; Ohashi PS; Allen C; Jaffray DA
    ACS Nano; 2018 Aug; 12(8):7583-7600. PubMed ID: 30004666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism.
    Moghadam MC; Deyranlou A; Sharifi A; Niazmand H
    Microvasc Res; 2015 Sep; 101():62-71. PubMed ID: 26122936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism Investigation of Hyaluronidase-Combined Multistage Nanoparticles for Solid Tumor Penetration and Antitumor Effect.
    Chen E; Han S; Song B; Xu L; Yuan H; Liang M; Sun Y
    Int J Nanomedicine; 2020; 15():6311-6324. PubMed ID: 32922003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology/Interstitial Fluid Pressure-Tunable Nanopomegranate Designed by Alteration of Membrane Fluidity under Tumor Enzyme and PEGylation.
    Wu C; Wang Z; Wang X; Zou J; Wu Z; Liu J; Zhang W
    Mol Pharm; 2021 May; 18(5):2039-2052. PubMed ID: 33769816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities.
    Kirtane AR; Kalscheuer SM; Panyam J
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1731-47. PubMed ID: 24036273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation.
    Stapleton S; Milosevic M; Tannock IF; Allen C; Jaffray DA
    J Control Release; 2015 Aug; 211():163-70. PubMed ID: 26070245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intratumoral drug delivery with nanoparticulate carriers.
    Holback H; Yeo Y
    Pharm Res; 2011 Aug; 28(8):1819-30. PubMed ID: 21213021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.
    Wu M; Frieboes HB; Chaplain MA; McDougall SR; Cristini V; Lowengrub JS
    J Theor Biol; 2014 Aug; 355():194-207. PubMed ID: 24751927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug transport modeling in solid tumors: A computational exploration of spatial heterogeneity of biophysical properties.
    Salavati H; Pullens P; Ceelen W; Debbaut C
    Comput Biol Med; 2023 Sep; 163():107190. PubMed ID: 37392620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
    Li L; ten Hagen TL; Bolkestein M; Gasselhuber A; Yatvin J; van Rhoon GC; Eggermont AM; Haemmerich D; Koning GA
    J Control Release; 2013 Apr; 167(2):130-7. PubMed ID: 23391444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.
    Welter M; Rieger H
    PLoS One; 2013; 8(8):e70395. PubMed ID: 23940570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration.
    Guo J; Zeng H; Chen Y
    Mol Pharm; 2020 Apr; 17(4):1028-1048. PubMed ID: 32150417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating tumor mechanics with nanomedicine for cancer therapy.
    Zhao Q; Chen J; Zhang Z; Xiao C; Zeng H; Xu C; Yang X; Li Z
    Biomater Sci; 2023 Jun; 11(13):4471-4489. PubMed ID: 37221958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors.
    Ozturk D; Yonucu S; Yilmaz D; Unlu MB
    Phys Med Biol; 2015 Feb; 60(4):1477-96. PubMed ID: 25611340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering nanoparticles to tackle tumor barriers.
    Li JX; Huang QY; Zhang JY; Du JZ
    J Mater Chem B; 2020 Aug; 8(31):6686-6696. PubMed ID: 32579660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing Interstitial Fluid Pressure and Inhibiting Pulmonary Metastasis of Breast Cancer by Gelatin Modified Cationic Lipid Nanoparticles.
    Gao X; Zhang J; Huang Z; Zuo T; Lu Q; Wu G; Shen Q
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29457-29468. PubMed ID: 28799743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery.
    Netti PA; Baxter LT; Boucher Y; Skalak R; Jain RK
    Cancer Res; 1995 Nov; 55(22):5451-8. PubMed ID: 7585615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.