BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38768353)

  • 21. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles.
    Ernsting MJ; Murakami M; Roy A; Li SD
    J Control Release; 2013 Dec; 172(3):782-94. PubMed ID: 24075927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor.
    Yunna C; Mengru H; Fengling W; Lei W; Weidong C
    Eur J Pharm Biopharm; 2021 Aug; 165():75-83. PubMed ID: 33991610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing Tumor Penetration of Nanomedicines.
    Sun Q; Ojha T; Kiessling F; Lammers T; Shi Y
    Biomacromolecules; 2017 May; 18(5):1449-1459. PubMed ID: 28328191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models.
    Koonce NA; Quick CM; Hardee ME; Jamshidi-Parsian A; Dent JA; Paciotti GF; Nedosekin D; Dings RP; Griffin RJ
    Int J Radiat Oncol Biol Phys; 2015 Nov; 93(3):588-96. PubMed ID: 26461001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-invasive imaging of barriers to drug delivery in tumors.
    Hassid Y; Eyal E; Margalit R; Furman-Haran E; Degani H
    Microvasc Res; 2008 Aug; 76(2):94-103. PubMed ID: 18638494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery.
    Stapleton S; Jaffray D; Milosevic M
    Adv Drug Deliv Rev; 2017 Jan; 109():119-130. PubMed ID: 27262923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combretastatin-A4 phosphate improves the distribution and antitumor efficacy of albumin-bound paclitaxel in W256 breast carcinoma model.
    Gao M; Zhang D; Jin Q; Jiang C; Wang C; Li J; Peng F; Huang D; Zhang J; Song S
    Oncotarget; 2016 Sep; 7(36):58133-58141. PubMed ID: 27531898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond.
    Iqbal J; Abbasi BA; Ahmad R; Mahmood T; Ali B; Khalil AT; Kanwal S; Shah SA; Alam MM; Badshah H; Munir A
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9449-9470. PubMed ID: 30219952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine.
    Tian Y; Cheng T; Sun F; Zhou Y; Yuan C; Guo Z; Wang Z
    Adv Colloid Interface Sci; 2024 Apr; 326():103124. PubMed ID: 38461766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High interstitial fluid pressure is associated with tumor-line specific vascular abnormalities in human melanoma xenografts.
    Simonsen TG; Gaustad JV; Leinaas MN; Rofstad EK
    PLoS One; 2012; 7(6):e40006. PubMed ID: 22768196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Innovative tumor interstitial fluid-triggered carbon dot-docetaxel nanoassemblies for targeted drug delivery and imaging of HER2-positive breast cancer.
    Xu D; Guo D; Zhang J; Tan X; Deng Z; Hou X; Wang S
    Int J Pharm; 2024 May; 657():124145. PubMed ID: 38679242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategies to improve tumor penetration of nanomedicines through nanoparticle design.
    Zhang YR; Lin R; Li HJ; He WL; Du JZ; Wang J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1519. PubMed ID: 29659166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery.
    Wang X; Zhang H; Chen X; Wu C; Ding K; Sun G; Luo Y; Xiang D
    Acta Biomater; 2023 Aug; 166():42-68. PubMed ID: 37257574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges.
    Li W; Little N; Park J; Foster CA; Chen J; Lu J
    Mol Pharm; 2021 Aug; 18(8):2889-2905. PubMed ID: 34260250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In silico investigations of intratumoral heterogeneous interstitial fluid pressure.
    Waldeland JO; Gaustad JV; Rofstad EK; Evje S
    J Theor Biol; 2021 Oct; 526():110787. PubMed ID: 34087266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy.
    Li HJ; Du JZ; Du XJ; Xu CF; Sun CY; Wang HX; Cao ZT; Yang XZ; Zhu YH; Nie S; Wang J
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):4164-9. PubMed ID: 27035960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor.
    Qian X; Ge L; Yuan K; Li C; Zhen X; Cai W; Cheng R; Jiang X
    Theranostics; 2019; 9(24):7417-7430. PubMed ID: 31695777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform.
    Hou L; Shan X; Hao L; Feng Q; Zhang Z
    Acta Biomater; 2017 May; 54():307-320. PubMed ID: 28274767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.