These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38768893)

  • 1. Flow modeling and structural characterization in fungal pellets.
    Sánchez-Vargas J; Valdés-Parada FJ; Peraza-Reyes L; Lasseux D; Trujillo-Roldán MA
    J Theor Biol; 2024 Aug; 590():111853. PubMed ID: 38768893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upscaling the porosity-permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning.
    Menke HP; Maes J; Geiger S
    Sci Rep; 2021 Jan; 11(1):2625. PubMed ID: 33514764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Newtonian fluid flow in porous media.
    Bowers CA; Miller CT
    Phys Rev Fluids; 2021 Dec; 6(12):. PubMed ID: 36601019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiscale analysis of nutrient transport and biological tissue growth in vitro.
    O'Dea RD; Nelson MR; El Haj AJ; Waters SL; Byrne HM
    Math Med Biol; 2015 Sep; 32(3):345-66. PubMed ID: 25323738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical modeling of fluid flow in cellular biological media: an overview.
    Kapellos GE; Alexiou TS; Payatakes AC
    Math Biosci; 2010 Jun; 225(2):83-93. PubMed ID: 20303992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscale simulation and numerical upscaling of a reactive flow in a plane channel.
    Porta GM; Thovert JF; Riva M; Guadagnini A; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036102. PubMed ID: 23030975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 8. Interface and Common Curve Dynamics.
    Gray WG; Miller CT
    Adv Water Resour; 2010 Dec; 33(12):1427-1443. PubMed ID: 21197134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Governing Equations for Viscoelastic Composites.
    Miller L; Ramírez-Torres A; Rodríguez-Ramos R; Penta R
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
    Karmakar A; Burgreen GW; Rydquist G; Antaki JF
    Comput Methods Programs Biomed; 2024 Apr; 247():108090. PubMed ID: 38394788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.
    Soltani M; Chen P
    PLoS One; 2013; 8(6):e67025. PubMed ID: 23840579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of fluid flow and pollutant transport in a homogeneous porous medium in the presence of plate stacks.
    Mehmood K; Ullah S; Tul Kubra K
    Heliyon; 2023 Mar; 9(3):e14329. PubMed ID: 36967901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 5. Single-Fluid-Phase Transport.
    Gray WG; Miller CT
    Adv Water Resour; 2009 May; 32(5):681-711. PubMed ID: 22563137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.
    Sefidgar M; Soltani M; Raahemifar K; Bazmara H
    Comput Math Methods Med; 2015; 2015():673426. PubMed ID: 25960764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Dynamics of Per- and Polyfluoroalkyl Substances (PFAS) at Interfaces in Porous Media: A Computational Roadmap from Nanoscale Molecular Dynamics Simulation to Macroscale Modeling.
    Sookhak Lari K; Davis GB; Kumar A; Rayner JL; Kong XZ; Saar MO
    ACS Omega; 2024 Feb; 9(5):5193-5202. PubMed ID: 38343928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 7. Single-Phase Megascale Flow Models.
    Gray WG; Miller CT
    Adv Water Resour; 2009 Aug; 32(8):1121-1142. PubMed ID: 20436941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical modeling of fluid flow in solid tumors.
    Soltani M; Chen P
    PLoS One; 2011; 6(6):e20344. PubMed ID: 21673952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the impact of upscaled parameters on radionuclide transport in three-dimensional fracture-matrix systems.
    Ma F; Dai Z; Zhang X; Hu Y; Cai F; Wang W; Tian Y; Soltanian MR
    Sci Total Environ; 2024 Jun; 930():172663. PubMed ID: 38653404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 4. Species Transport Fundamentals.
    Miller CT; Gray WG
    Adv Water Resour; 2008 Mar; 31(3):577-597. PubMed ID: 19255613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.