BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38769039)

  • 1. Retention time of different ophthalmic viscosurgical devices during phacoemulsification in rabbit ocular model: A comparative analysis.
    Shalev D; Kleinmann G
    Clin Exp Ophthalmol; 2024 May; ():. PubMed ID: 38769039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention and removal of a new viscous dispersive ophthalmic viscosurgical device during cataract surgery in animal eyes.
    Oshika T; Okamoto F; Kaji Y; Hiraoka T; Kiuchi T; Sato M; Kawana K
    Br J Ophthalmol; 2006 Apr; 90(4):485-7. PubMed ID: 16547332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness of the Protective Layers of Different Ophthalmic Viscosurgical Devices During Lens Surgery in a Porcine Model.
    Wüst M; Matten P; Nenning M; Findl O
    Transl Vis Sci Technol; 2022 Feb; 11(2):28. PubMed ID: 35175318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersive viscosurgical devices demonstrate greater efficacy in protecting corneal endothelium in vitro.
    Yildirim TM; Auffarth GU; Son HS; Khoramnia R; Munro DJ; Merz PR
    BMJ Open Ophthalmol; 2019; 4(1):e000227. PubMed ID: 30997401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal times for a dispersive and a cohesive ophthalmic viscosurgical device correlated with intraocular lens material.
    Auffarth GU; Holzer MP; Visessook N; Apple DJ; Völcker HE
    J Cataract Refract Surg; 2004 Nov; 30(11):2410-4. PubMed ID: 15519097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative assessment of ophthalmic viscosurgical device retention using in vivo confocal microscopy.
    Petroll WM; Jafari M; Lane SS; Jester JV; Cavanagh HD
    J Cataract Refract Surg; 2005 Dec; 31(12):2363-8. PubMed ID: 16473232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro behavior of ophthalmic viscosurgical devices during phacoemulsification.
    Bissen-Miyajima H
    J Cataract Refract Surg; 2006 Jun; 32(6):1026-31. PubMed ID: 16814065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of thermoreversible hydrogel (poloxamer 407) to protect the corneal endothelium during phacoemulsification in porcine and rabbit eyes.
    Choi JY; Cho CS; Han YK
    J Cataract Refract Surg; 2018 Oct; 44(10):1254-1260. PubMed ID: 30139637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Understanding the Mechanism of Ophthalmic Viscosurgical Device Retention in the Anterior Chamber or on the Corneal Surface during Ocular Surgery.
    Watanabe I; Yoshioka K; Takahashi K; Hoshi H; Nagata M; Matsushima H; Suzuki K
    Chem Pharm Bull (Tokyo); 2021; 69(6):595-599. PubMed ID: 34078806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal endothelial cell coating during phacoemulsification using a new dispersive hyaluronic acid ophthalmic viscosurgical device.
    Kretz FT; Limberger IJ; Auffarth GU
    J Cataract Refract Surg; 2014 Nov; 40(11):1879-84. PubMed ID: 25217075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal endothelium protection provided by ophthalmic viscosurgical devices during phacoemulsification: experimental study in rabbit eyes.
    Park SSE; Wilkinson SW; Ungricht EL; Trapnell M; Nydegger J; Brintz BJ; Mamalis N; Olson RJ; Werner L
    J Cataract Refract Surg; 2022 Dec; 48(12):1440-1445. PubMed ID: 36449674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal endothelial cell loss and intraocular pressure following phacoemulsification using a new viscous-cohesive ophthalmic viscosurgical device.
    Wood K; Pessach Y; Kovalyuk N; Lifshitz M; Winter H; Pikkel J
    Int Ophthalmol; 2024 Feb; 44(1):10. PubMed ID: 38319386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel "Slit Side View" Method to Evaluate Fluid Dynamics during Phacoemulsification.
    Suzuki H; Igarashi T; Shiwa T; Takahashi H
    J Ophthalmol; 2018; 2018():5027238. PubMed ID: 30363725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effect of Viscoat and DuoVisc on postoperative intraocular pressure after small-incision cataract surgery.
    Rainer G; Stifter E; Luksch A; Menapace R
    J Cataract Refract Surg; 2008 Feb; 34(2):253-7. PubMed ID: 18242449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of incisional friction and ophthalmic viscosurgical devices on the heat generation of ultrasound during cataract surgery.
    Floyd M; Valentine J; Coombs J; Olson RJ
    J Cataract Refract Surg; 2006 Jul; 32(7):1222-6. PubMed ID: 16857513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative thermographic analysis of viscoelastic substances in an experimental study in rabbits.
    Jurowski P; Goś R; Kuśmierczyk J; Owczarek G; Gralewicz G
    J Cataract Refract Surg; 2006 Jan; 32(1):137-40. PubMed ID: 16516792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoat versus Visthesia during phacoemulsification cataract surgery: corneal and foveal changes.
    Moschos MM; Chatziralli IP; Sergentanis TN
    BMC Ophthalmol; 2011 Apr; 11():9. PubMed ID: 21529354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Assessment of Ophthalmic Viscosurgical Devices on Visibility, Spreadability, and Durability as Corneal Wetting Agents for the Wet Shell Technique.
    Watanabe I; Hoshi H; Suzuki K; Nagata M; Matsushima H
    Ophthalmol Ther; 2020 Sep; 9(3):609-623. PubMed ID: 32613592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Ophthalmic Viscosurgical Devices in Cataract Surgery.
    Malvankar-Mehta MS; Fu A; Subramanian Y; Hutnik C
    J Ophthalmol; 2020; 2020():7801093. PubMed ID: 33133677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of the soft-shell technique using Viscoat and Hyal-2000.
    Kim H; Joo CK
    J Cataract Refract Surg; 2004 Nov; 30(11):2366-70. PubMed ID: 15519090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.