BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38769288)

  • 1. Elevated Na is a dynamic and reversible modulator of mitochondrial metabolism in the heart.
    Chung YJ; Hoare Z; Baark F; Yu CS; Guo J; Fuller W; Southworth R; Katschinski DM; Murphy MP; Eykyn TR; Shattock MJ
    Nat Commun; 2024 May; 15(1):4277. PubMed ID: 38769288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is there a causal link between intracellular Na elevation and metabolic remodelling in cardiac hypertrophy?
    Aksentijevic D; O'Brien BA; Eykyn TR; Shattock MJ
    Biochem Soc Trans; 2018 Aug; 46(4):817-827. PubMed ID: 29970448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular sodium elevation reprograms cardiac metabolism.
    Aksentijević D; Karlstaedt A; Basalay MV; O'Brien BA; Sanchez-Tatay D; Eminaga S; Thakker A; Tennant DA; Fuller W; Eykyn TR; Taegtmeyer H; Shattock MJ
    Nat Commun; 2020 Aug; 11(1):4337. PubMed ID: 32859897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na+,K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure.
    Schwinger RH; Wang J; Frank K; Müller-Ehmsen J; Brixius K; McDonough AA; Erdmann E
    Circulation; 1999 Apr; 99(16):2105-12. PubMed ID: 10217649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart.
    Fukushima A; Alrob OA; Zhang L; Wagg CS; Altamimi T; Rawat S; Rebeyka IM; Kantor PF; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H347-63. PubMed ID: 27261364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. With a grain of salt: Sodium elevation and metabolic remodelling in heart failure.
    Aksentijević D; Shattock MJ
    J Mol Cell Cardiol; 2021 Dec; 161():106-115. PubMed ID: 34371034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+ accumulation increases Ca2+ overload and impairs function in anoxic rat heart.
    Tani M; Neely JR
    J Mol Cell Cardiol; 1990 Jan; 22(1):57-72. PubMed ID: 2157854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart.
    Liu T; O'Rourke B
    J Bioenerg Biomembr; 2009 Apr; 41(2):127-32. PubMed ID: 19390955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of vanadate on glycolysis, intracellular sodium, and pH in perfused rat hearts.
    Geraldes CF; Castro MM; Sherry AD; Ramasamy R
    Mol Cell Biochem; 1997 May; 170(1-2):53-63. PubMed ID: 9144318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiomyocytes from postinfarction failing rat hearts have improved ischemia tolerance.
    Sharikabad MN; Aronsen JM; Haugen E; Pedersen J; Møller AS; Mørk HK; Aass HC; Sejersted OM; Sjaastad I; Brørs O
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H787-95. PubMed ID: 19136604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ischemic preconditioning with opening of mitochondrial adenosine triphosphate-sensitive potassium channels or Na/H exchange inhibition: which is the best protective strategy for heart transplants?
    Kevelaitis E; Oubénaissa A; Mouas C; Peynet J; Menasché P
    J Thorac Cardiovasc Surg; 2001 Jan; 121(1):155-62. PubMed ID: 11135172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of increased myocardial cellular 23Na NMR signals in perfused guinea-pig heart induced by dihydroouabain and grayanotoxin-I.
    Hotta Y; Ando H; Takeya K; Sakakibara J
    Mol Cell Biochem; 1994 Oct; 139(1):59-70. PubMed ID: 7854342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na-dependent changes in intracellular Ca in spontaneously hypertensive rat hearts.
    Anderson SE; Gray SD; Atherley R; Cala PM
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Jul; 123(3):299-309. PubMed ID: 10501022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial regulation of oxygen sensing.
    Chandel NS
    Adv Exp Med Biol; 2010; 661():339-54. PubMed ID: 20204741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts.
    Babsky A; Doliba N; Doliba N; Savchenko A; Wehrli S; Osbakken M
    Exp Biol Med (Maywood); 2001 Jun; 226(6):543-51. PubMed ID: 11395924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury.
    Wang S; Radhakrishnan J; Ayoub IM; Kolarova JD; Taglieri DM; Gazmuri RJ
    J Appl Physiol (1985); 2007 Jul; 103(1):55-65. PubMed ID: 17431086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157.
    Cox DA; Conforti L; Sperelakis N; Matlib MA
    J Cardiovasc Pharmacol; 1993 Apr; 21(4):595-9. PubMed ID: 7681905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na⁺ transport in the normal and failing heart - remember the balance.
    Despa S; Bers DM
    J Mol Cell Cardiol; 2013 Aug; 61():2-10. PubMed ID: 23608603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations.
    Liu J; Tian J; Haas M; Shapiro JI; Askari A; Xie Z
    J Biol Chem; 2000 Sep; 275(36):27838-44. PubMed ID: 10874029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.