These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38769331)

  • 1. Quantifying the fluxes of carbon loss from an undrained tropical peatland ecosystem in Indonesia.
    Asyhari A; Gangga A; Putra CAS; Ritonga RP; Candra RA; Anshari GZ; Bowen JC; Perryman CR; Novita N
    Sci Rep; 2024 May; 14(1):11459. PubMed ID: 38769331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia.
    Sakabe A; Itoh M; Hirano T; Kusin K
    Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration.
    Jauhiainen J; Limin S; Silvennoinen H; Vasander H
    Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.
    Moore S; Evans CD; Page SE; Garnett MH; Jones TG; Freeman C; Hooijer A; Wiltshire AJ; Limin SH; Gauci V
    Nature; 2013 Jan; 493(7434):660-3. PubMed ID: 23364745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A drained nutrient-poor peatland forest in boreal Sweden constitutes a net carbon sink after integrating terrestrial and aquatic fluxes.
    Tong CHM; Noumonvi KD; Ratcliffe J; Laudon H; Järveoja J; Drott A; Nilsson MB; Peichl M
    Glob Chang Biol; 2024 Mar; 30(3):e17246. PubMed ID: 38501699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest.
    McCalmont J; Kho LK; Teh YA; Lewis K; Chocholek M; Rumpang E; Hill T
    Glob Chang Biol; 2021 Jun; 27(11):2361-2376. PubMed ID: 33528067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drainage increases CO
    Prananto JA; Minasny B; Comeau LP; Rudiyanto R; Grace P
    Glob Chang Biol; 2020 Aug; 26(8):4583-4600. PubMed ID: 32391633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys.
    Wedeux B; Dalponte M; Schlund M; Hagen S; Cochrane M; Graham L; Usup A; Thomas A; Coomes D
    Glob Chang Biol; 2020 Jul; 26(7):3947-3964. PubMed ID: 32267596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of degradation and deforestation of palm swamp peatlands and associated carbon emissions in the Peruvian Amazon.
    Marcus MS; Hergoualc'h K; Honorio Coronado EN; Gutiérrez-Vélez VH
    J Environ Manage; 2024 Feb; 351():119665. PubMed ID: 38086114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia.
    Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S
    Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon.
    Mander Ü; Espenberg M; Melling L; Kull A
    Biogeochemistry; 2024; 167(4):523-543. PubMed ID: 38707516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal variability of soil N
    Hergoualc'h K; Dezzeo N; Verchot LV; Martius C; van Lent J; Del Aguila-Pasquel J; López Gonzales M
    Glob Chang Biol; 2020 Dec; 26(12):7198-7216. PubMed ID: 32949077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes.
    Wijedasa LS; Sloan S; Page SE; Clements GR; Lupascu M; Evans TA
    Glob Chang Biol; 2018 Oct; 24(10):4598-4613. PubMed ID: 29855120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil CO
    Busman NA; Melling L; Goh KJ; Imran Y; Sangok FE; Watanabe A
    Sci Total Environ; 2023 Feb; 858(Pt 2):159973. PubMed ID: 36347298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse gas fluxes of different land uses in mangrove ecosystem of East Kalimantan, Indonesia.
    Arifanti VB; Candra RA; Putra CAS; Asyhari A; Gangga A; Ritonga RP; Ilman M; Anggoro AW; Novita N
    Carbon Balance Manag; 2024 Jun; 19(1):17. PubMed ID: 38824211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting oxidative peat decomposition due to land use in tropical peat swamp forests in Indonesia.
    Itoh M; Okimoto Y; Hirano T; Kusin K
    Sci Total Environ; 2017 Dec; 609():906-915. PubMed ID: 28783903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiyear greenhouse gas balances at a rewetted temperate peatland.
    Wilson D; Farrell CA; Fallon D; Moser G; Müller C; Renou-Wilson F
    Glob Chang Biol; 2016 Dec; 22(12):4080-4095. PubMed ID: 27099183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Hoyt AM; Gandois L; Eri J; Kai FM; Harvey CF; Cobb AR
    Glob Chang Biol; 2019 Sep; 25(9):2885-2899. PubMed ID: 31100190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.
    Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D
    Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.