These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38769347)

  • 1. Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality.
    Yuan H; Plekhanova T; Walmsley R; Reynolds AC; Maddison KJ; Bucan M; Gehrman P; Rowlands A; Ray DW; Bennett D; McVeigh J; Straker L; Eastwood P; Kyle SD; Doherty A
    NPJ Digit Med; 2024 May; 7(1):86. PubMed ID: 38769347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality.
    Yuan H; Plekhanova T; Walmsley R; Reynolds AC; Maddison KJ; Bucan M; Gehrman P; Rowlands A; Ray DW; Bennett D; McVeigh J; Straker L; Eastwood P; Kyle SD; Doherty A
    medRxiv; 2023 Jul; ():. PubMed ID: 37461532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of an automated sleep detection algorithm using data from multiple accelerometer brands.
    Plekhanova T; Rowlands AV; Davies MJ; Hall AP; Yates T; Edwardson CL
    J Sleep Res; 2023 Jun; 32(3):e13760. PubMed ID: 36317222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambulatory sleep scoring using accelerometers-distinguishing between nonwear and sleep/wake states.
    Barouni A; Ottenbacher J; Schneider J; Feige B; Riemann D; Herlan A; El Hardouz D; McLennan D
    PeerJ; 2020; 8():e8284. PubMed ID: 31915581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of accelerometer-derived sleep measures with lifetime psychiatric diagnoses: A cross-sectional study of 89,205 participants from the UK Biobank.
    Wainberg M; Jones SE; Beaupre LM; Hill SL; Felsky D; Rivas MA; Lim ASP; Ollila HM; Tripathy SJ
    PLoS Med; 2021 Oct; 18(10):e1003782. PubMed ID: 34637446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep classification from wrist-worn accelerometer data using random forests.
    Sundararajan K; Georgievska S; Te Lindert BHW; Gehrman PR; Ramautar J; Mazzotti DR; Sabia S; Weedon MN; van Someren EJW; Ridder L; Wang J; van Hees VT
    Sci Rep; 2021 Jan; 11(1):24. PubMed ID: 33420133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning sleep duration classification in Preschoolers using waist-worn ActiGraphs.
    Kuzik N; Spence JC; Carson V
    Sleep Med; 2021 Feb; 78():141-148. PubMed ID: 33429290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography.
    Full KM; Kerr J; Grandner MA; Malhotra A; Moran K; Godoble S; Natarajan L; Soler X
    Sleep Health; 2018 Apr; 4(2):209-216. PubMed ID: 29555136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of photoplethysmography- and acceleration-based sleep staging in a community sample: comparison with polysomnography and Actiwatch.
    Liu PK; Ting N; Chiu HC; Lin YC; Liu YT; Ku BW; Lee PL
    J Clin Sleep Med; 2023 Oct; 19(10):1797-1810. PubMed ID: 37338335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Associations of Device-Measured Sleep Duration and Efficiency With All-Cause and Cause-Specific Mortality: A Prospective Cohort Study of 90 398 UK Biobank Participants.
    Liang YY; Ai S; Xue H; Chen Y; Zhou J; Shu X; Weng F; Zhou M; Ma H; Zhang J; Geng Q; Wing YK
    J Gerontol A Biol Sci Med Sci; 2023 Aug; 78(9):1717-1724. PubMed ID: 37186145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of actigraphy sleep metrics in children aged 8 to 16 years: considerations for device type, placement and algorithms.
    Meredith-Jones KA; Haszard JJ; Graham-DeMello A; Campbell A; Stewart T; Galland BC; Cox A; Kennedy G; Duncan S; Taylor RW
    Int J Behav Nutr Phys Act; 2024 Apr; 21(1):40. PubMed ID: 38627708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AI-Driven sleep staging from actigraphy and heart rate.
    Song TA; Chowdhury SR; Malekzadeh M; Harrison S; Hoge TB; Redline S; Stone KL; Saxena R; Purcell SM; Dutta J
    PLoS One; 2023; 18(5):e0285703. PubMed ID: 37195925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospective cohort study to evaluate the accuracy of sleep measurement by consumer-grade smart devices compared with polysomnography in a sleep disorders population.
    Ellender CM; Zahir SF; Meaklim H; Joyce R; Cunnington D; Swieca J
    BMJ Open; 2021 Nov; 11(11):e044015. PubMed ID: 34753750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of accelerometer-measured sleep duration and different intensities of physical activity with incident type 2 diabetes in a population-based cohort study.
    Jin X; Chen Y; Feng H; Zhou M; Chan JWY; Liu Y; Kong APS; Tan X; Wing YK; Liang YY; Zhang J
    J Sport Health Sci; 2024 Mar; 13(2):222-232. PubMed ID: 36871624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting a sleep tracker from EEG-based, iteratively improved, low-cost multisensor, and actigraphy-only devices.
    Ong JL; Golkashani HA; Ghorbani S; Wong KF; Chee NIYN; Willoughby AR; Chee MWL
    Sleep Health; 2024 Feb; 10(1):9-23. PubMed ID: 38087674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of 'Somnivore', a Machine Learning Algorithm for Automated Scoring and Analysis of Polysomnography Data.
    Allocca G; Ma S; Martelli D; Cerri M; Del Vecchio F; Bastianini S; Zoccoli G; Amici R; Morairty SR; Aulsebrook AE; Blackburn S; Lesku JA; Rattenborg NC; Vyssotski AL; Wams E; Porcheret K; Wulff K; Foster R; Chan JKM; Nicholas CL; Freestone DR; Johnston LA; Gundlach AL
    Front Neurosci; 2019; 13():207. PubMed ID: 30936820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine Learning Model for Predicting Sleep and Wakefulness Based on Accelerometry, Skin Temperature and Contextual Information.
    Logacjov A; Skarpsno ES; Kongsvold A; Bach K; Mork PJ
    Nat Sci Sleep; 2024; 16():699-710. PubMed ID: 38863481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep characteristics of self-reported long sleepers.
    Patel SR; Blackwell T; Ancoli-Israel S; Stone KL;
    Sleep; 2012 May; 35(5):641-8. PubMed ID: 22547890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Flexible Deep Learning Architecture for Temporal Sleep Stage Classification Using Accelerometry and Photoplethysmography.
    Olsen M; Zeitzer JM; Richardson RN; Davidenko P; Jennum PJ; Sorensen HBD; Mignot E
    IEEE Trans Biomed Eng; 2023 Jan; 70(1):228-237. PubMed ID: 35786544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults.
    Fonseca P; Weysen T; Goelema MS; Møst EIS; Radha M; Lunsingh Scheurleer C; van den Heuvel L; Aarts RM
    Sleep; 2017 Jul; 40(7):. PubMed ID: 28838130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.