These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 38769564)

  • 1. Towards proactive palliative care in oncology: developing an explainable EHR-based machine learning model for mortality risk prediction.
    Zhuang Q; Zhang AY; Cong RSTY; Yang GM; Neo PSH; Tan DS; Chua ML; Tan IB; Wong FY; Eng Hock Ong M; Shao Wei Lam S; Liu N
    BMC Palliat Care; 2024 May; 23(1):124. PubMed ID: 38769564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explainable Machine Learning Model to Preoperatively Predict Postoperative Complications in Inpatients With Cancer Undergoing Major Operations.
    Hernandez MC; Chen C; Nguyen A; Choong K; Carlin C; Nelson RA; Rossi LA; Seth N; McNeese K; Yuh B; Eftekhari Z; Lai LL
    JCO Clin Cancer Inform; 2024 Apr; 8():e2300247. PubMed ID: 38648576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation.
    Vaid A; Somani S; Russak AJ; De Freitas JK; Chaudhry FF; Paranjpe I; Johnson KW; Lee SJ; Miotto R; Richter F; Zhao S; Beckmann ND; Naik N; Kia A; Timsina P; Lala A; Paranjpe M; Golden E; Danieletto M; Singh M; Meyer D; O'Reilly PF; Huckins L; Kovatch P; Finkelstein J; Freeman RM; Argulian E; Kasarskis A; Percha B; Aberg JA; Bagiella E; Horowitz CR; Murphy B; Nestler EJ; Schadt EE; Cho JH; Cordon-Cardo C; Fuster V; Charney DS; Reich DL; Bottinger EP; Levin MA; Narula J; Fayad ZA; Just AC; Charney AW; Nadkarni GN; Glicksberg BS
    J Med Internet Res; 2020 Nov; 22(11):e24018. PubMed ID: 33027032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and internal validation of machine learning models for personalized survival predictions in spinal cord glioma patients.
    Karabacak M; Schupper AJ; Carr MT; Bhimani AD; Steinberger J; Margetis K
    Spine J; 2024 Jun; 24(6):1065-1076. PubMed ID: 38365005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Potential of Machine Learning and Wearable Devices in End-of-Life Care in Predicting 7-Day Death Events Among Patients With Terminal Cancer: Cohort Study.
    Liu JH; Shih CY; Huang HL; Peng JK; Cheng SY; Tsai JS; Lai F
    J Med Internet Res; 2023 Aug; 25():e47366. PubMed ID: 37594793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study.
    Peng X; Zhu T; Wang T; Wang F; Li K; Hao X
    BMC Anesthesiol; 2022 Sep; 22(1):284. PubMed ID: 36088288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine learning model: A cohort study.
    Soldera J; Corso LL; Rech MM; Ballotin VR; Bigarella LG; Tomé F; Moraes N; Balbinot RS; Rodriguez S; Brandão ABM; Hochhegger B
    World J Hepatol; 2024 Feb; 16(2):193-210. PubMed ID: 38495288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explainable Machine Learning Model to Predict Overall Survival in Patients Treated With Palliative Radiotherapy for Bone Metastases.
    Cilla S; Rossi R; Habberstad R; Klepstad P; Dall'Agata M; Kaasa S; Valenti V; Donati CM; Maltoni M; Morganti AG
    JCO Clin Cancer Inform; 2024 Jun; 8():e2400027. PubMed ID: 38917384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a Machine Learning Algorithm to Predict 180-Day Mortality for Outpatients With Cancer.
    Manz CR; Chen J; Liu M; Chivers C; Regli SH; Braun J; Draugelis M; Hanson CW; Shulman LN; Schuchter LM; O'Connor N; Bekelman JE; Patel MS; Parikh RB
    JAMA Oncol; 2020 Nov; 6(11):1723-1730. PubMed ID: 32970131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery.
    Deng H; Eftekhari Z; Carlin C; Veerapong J; Fournier KF; Johnston FM; Dineen SP; Powers BD; Hendrix R; Lambert LA; Abbott DE; Vande Walle K; Grotz TE; Patel SH; Clarke CN; Staley CA; Abdel-Misih S; Cloyd JM; Lee B; Fong Y; Raoof M
    JAMA Netw Open; 2022 May; 5(5):e2212930. PubMed ID: 35612856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based model to predict delirium in patients with advanced cancer treated with palliative care: a multicenter, patient-based registry cohort.
    Kim YJ; Lee H; Woo HG; Lee SW; Hong M; Jung EH; Yoo SH; Lee J; Yon DK; Kang B
    Sci Rep; 2024 May; 14(1):11503. PubMed ID: 38769382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty.
    Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A
    Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Does the Skeletal Oncology Research Group Algorithm's Prediction of 5-year Survival in Patients with Chondrosarcoma Perform on International Validation?
    Bongers MER; Karhade AV; Setola E; Gambarotti M; Groot OQ; Erdoğan KE; Picci P; Donati DM; Schwab JH; Palmerini E
    Clin Orthop Relat Res; 2020 Oct; 478(10):2300-2308. PubMed ID: 32433107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple machine learning model for the prediction of acute kidney injury following noncardiac surgery in geriatric patients: a prospective cohort study.
    Peng X; Zhu T; Chen Q; Zhang Y; Zhou R; Li K; Hao X
    BMC Geriatr; 2024 Jun; 24(1):549. PubMed ID: 38918723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study.
    Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC
    J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of interpretable machine learning models to predict in-hospital prognosis of acute heart failure patients.
    Tanaka M; Kohjitani H; Yamamoto E; Morimoto T; Kato T; Yaku H; Inuzuka Y; Tamaki Y; Ozasa N; Seko Y; Shiba M; Yoshikawa Y; Yamashita Y; Kitai T; Taniguchi R; Iguchi M; Nagao K; Kawai T; Komasa A; Kawase Y; Morinaga T; Toyofuku M; Furukawa Y; Ando K; Kadota K; Sato Y; Kuwahara K; Okuno Y; Kimura T; Ono K;
    ESC Heart Fail; 2024 May; ():. PubMed ID: 38751135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explainable machine learning model to predict refeeding hypophosphatemia.
    Choi TY; Chang MY; Heo S; Jang JY
    Clin Nutr ESPEN; 2021 Oct; 45():213-219. PubMed ID: 34620320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.