These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 38769829)
1. [Clinical Multi-features Analysis of Cystic Lung Adenocarcinoma and Construction of Invasive Risk Prediction Model]. Wang Q; Fu C; Wang K; Ren Q; Chen A; Xu X; Chen L; Zhu Q Zhongguo Fei Ai Za Zhi; 2024 Apr; 27(4):266-275. PubMed ID: 38769829 [TBL] [Abstract][Full Text] [Related]
2. CT-Assisted Improvements in the Accuracy of the Intraoperative Frozen Section Examination of Ground-Glass Density Nodules. Xinli W; Xiaoshuang S; Chengxin Y; Qiang Z Comput Math Methods Med; 2022; 2022():8967643. PubMed ID: 35035526 [TBL] [Abstract][Full Text] [Related]
3. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction. Li X; Zhang W; Yu Y; Zhang G; Zhou L; Wu Z; Liu B BMC Cancer; 2020 Jan; 20(1):60. PubMed ID: 31992239 [TBL] [Abstract][Full Text] [Related]
4. [Value of CT Features on Differential Diagnosis of Pulmonary Subsolid Nodules and Degree of invasion Prediction in Pulmonary Adenocarcinoma]. Guo F; Li X; Wang X; Zheng W; Wang Q; Song W; Yu T; Fan Y; Wang Y Zhongguo Fei Ai Za Zhi; 2018 Jun; 21(6):451-457. PubMed ID: 29945703 [TBL] [Abstract][Full Text] [Related]
5. Lung adenocarcinoma associated with cystic airspaces: Predictive value of CT features in assessing pathologic invasiveness. Zhu H; Zhang L; Huang Z; Chen J; Sun L; Chen Y; Huang G; Chen Q; Yu H Eur J Radiol; 2023 Aug; 165():110947. PubMed ID: 37392546 [TBL] [Abstract][Full Text] [Related]
6. [CT diagnosis of different pathological types of ground-glass nodules]. Gao F; Ge XJ; Li M; Chen Y; Lyu F; Hua Y; Ren Q; Qi L Zhonghua Zhong Liu Za Zhi; 2014 Mar; 36(3):188-92. PubMed ID: 24785278 [TBL] [Abstract][Full Text] [Related]
7. Discriminating invasive adenocarcinoma among lung pure ground-glass nodules: a multi-parameter prediction model. Hu F; Huang H; Jiang Y; Feng M; Wang H; Tang M; Zhou Y; Tan X; Liu Y; Xu C; Ding N; Bai C; Hu J; Yang D; Zhang Y J Thorac Dis; 2021 Sep; 13(9):5383-5394. PubMed ID: 34659805 [TBL] [Abstract][Full Text] [Related]
8. A computerized tomography-based radiomic model for assessing the invasiveness of lung adenocarcinoma manifesting as ground-glass opacity nodules. Zhu M; Yang Z; Wang M; Zhao W; Zhu Q; Shi W; Yu H; Liang Z; Chen L Respir Res; 2022 Apr; 23(1):96. PubMed ID: 35429974 [TBL] [Abstract][Full Text] [Related]
9. [HRCT features differentiate synchronous multiple primary lung adenocarcinomas from intrapulmonary metastases]. Zhou LN; Wu N; Zhao SJ; Yang L; Wang YL; Wang RB; Yang SX Zhonghua Zhong Liu Za Zhi; 2020 Jun; 42(6):449-455. PubMed ID: 32575939 [No Abstract] [Full Text] [Related]
10. CT Characteristics for Predicting Invasiveness in Pulmonary Pure Ground-Glass Nodules. Chu ZG; Li WJ; Fu BJ; Lv FJ AJR Am J Roentgenol; 2020 Aug; 215(2):351-358. PubMed ID: 32348187 [No Abstract] [Full Text] [Related]
11. Using CT features of cystic airspace to predict lung adenocarcinoma invasiveness. Zhang Y; Ding BW; Wang LN; Ma WL; Zhu L; Chen QH; Yu H Quant Imaging Med Surg; 2024 Oct; 14(10):7265-7278. PubMed ID: 39429587 [TBL] [Abstract][Full Text] [Related]
12. [Establishment and analysis of prediction model for invasive subsolid pulmonary nodules based on radiomics]. Wu XL; Xu QZ; Chen T; Wang FL; Jiang WH; Lyu GM; Lu G Zhonghua Yi Xue Za Zhi; 2022 Jan; 102(3):209-215. PubMed ID: 35042290 [No Abstract] [Full Text] [Related]
13. Computed Tomography Findings for Predicting Invasiveness of Lung Adenocarcinomas Manifesting as Pure Ground-Glass Nodules. Park J; Doo KW; Sung YE; Jung JI; Chang S Can Assoc Radiol J; 2023 Feb; 74(1):137-146. PubMed ID: 35840350 [No Abstract] [Full Text] [Related]
14. Prediction of high-grade patterns of stage IA lung invasive adenocarcinoma based on high-resolution CT features: a bicentric study. Dong H; Yin LK; Qiu YG; Wang XB; Yang JJ; Lou CC; Ye XD Eur Radiol; 2023 Jun; 33(6):3931-3940. PubMed ID: 36600124 [TBL] [Abstract][Full Text] [Related]
15. [A Retrospective Study of Mean Computed Tomography Value to Predict the Tumor Invasiveness in AAH and Clinical Stage Ia Lung Cancer]. Wu H; Liu C; Xu M; Xiong R; Xu G; Li C; Xie M Zhongguo Fei Ai Za Zhi; 2018 Mar; 21(3):190-196. PubMed ID: 29587938 [TBL] [Abstract][Full Text] [Related]
16. Qualitative and quantitative imaging features of pulmonary subsolid nodules: differentiating invasive adenocarcinoma from minimally invasive adenocarcinoma and preinvasive lesions. Qi L; Lu W; Yang L; Tang W; Zhao S; Huang Y; Wu N; Wang J J Thorac Dis; 2019 Nov; 11(11):4835-4846. PubMed ID: 31903274 [TBL] [Abstract][Full Text] [Related]
17. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884 [TBL] [Abstract][Full Text] [Related]
18. Nomogram for Predicting the Risk of Invasive Pulmonary Adenocarcinoma for Pure Ground-Glass Nodules. Wang L; Shen W; Xi Y; Liu S; Zheng D; Jin C Ann Thorac Surg; 2018 Apr; 105(4):1058-1064. PubMed ID: 29452996 [TBL] [Abstract][Full Text] [Related]
19. Risk Factors and Predictive Efficacy of Visceral Pleural Invasion in Lung Adenocarcinoma Patients with mGGN type. Zhang Z; Zhang Q; Wang K; Zhang Z; Xu S Altern Ther Health Med; 2024 Jul; 30(7):46-49. PubMed ID: 38687859 [TBL] [Abstract][Full Text] [Related]
20. Identification of pathological subtypes of early lung adenocarcinoma based on artificial intelligence parameters and CT signs. Fang W; Zhang G; Yu Y; Chen H; Liu H Biosci Rep; 2022 Jan; 42(1):. PubMed ID: 35005775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]