These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38769954)

  • 1. Review of recent progress in the development of electrolytes for Cd/Pb-based quantum dot-sensitized solar cells: performance and stability.
    Kasaye BB; Shura MW; Dibaba ST
    RSC Adv; 2024 May; 14(23):16255-16268. PubMed ID: 38769954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium Selenide Quantum Dots for Solar Cell Applications: A Review.
    Rahman MM; Karim MR; Alharbi HF; Aldokhayel B; Uzzaman T; Zahir H
    Chem Asian J; 2021 Apr; 16(8):902-921. PubMed ID: 33615706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dot-sensitized solar cells incorporating nanomaterials.
    Yang Z; Chen CY; Roy P; Chang HT
    Chem Commun (Camb); 2011 Sep; 47(34):9561-71. PubMed ID: 21637864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots.
    Muthalif MPA; Sunesh CD; Choe Y
    J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Transition Metal Sulfides as Counter Electrodes for Dye-Sensitized and Quantum Dot-Sensitized Solar Cells.
    Kharboot LH; Fadil NA; Bakar TAA; Najib ASM; Nordin NH; Ghazali H
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO₂ Solar Cells.
    Hori K; Zhang Y; Tusamalee P; Nakazawa N; Yoshihara Y; Wang R; Toyoda T; Hayase S; Shen Q
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29941828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells.
    Faber MS; Park K; Cabán-Acevedo M; Santra PK; Jin S
    J Phys Chem Lett; 2013 Jun; 4(11):1843-9. PubMed ID: 26283119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient quantum dot-sensitized solar cells through sulfur-rich carbon nitride modified electrolytes.
    Rasal AS; Dehvari K; Getachew G; Korupalli C; Ghule AV; Chang JY
    Nanoscale; 2021 Mar; 13(11):5730-5743. PubMed ID: 33725063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface Engineering in Quantum-Dot-Sensitized Solar Cells.
    Halder G; Ghosh D; Ali MY; Sahasrabudhe A; Bhattacharyya S
    Langmuir; 2018 Sep; 34(35):10197-10216. PubMed ID: 29584956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells.
    Roelofs KE; Herron SM; Bent SF
    ACS Nano; 2015 Aug; 9(8):8321-34. PubMed ID: 26244426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.
    Prasad RM; Pathan HM
    Nanotechnology; 2016 Apr; 27(14):145402. PubMed ID: 26916535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure.
    Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ
    Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells.
    Muthalif MPA; Choe Y
    J Colloid Interface Sci; 2021 Aug; 595():15-24. PubMed ID: 33813220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency Enhancement of Solid-State CuInS
    Fu B; Deng C; Yang L
    Nanoscale Res Lett; 2019 Jun; 14(1):198. PubMed ID: 31172299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects.
    Hod I; Zaban A
    Langmuir; 2014 Jul; 30(25):7264-73. PubMed ID: 24369734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition.
    Salant A; Shalom M; Hod I; Faust A; Zaban A; Banin U
    ACS Nano; 2010 Oct; 4(10):5962-8. PubMed ID: 20866044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting Power Conversion Efficiency of Quantum Dot-Sensitized Solar Cells by Integrating Concentrating Photovoltaic Concept with Double Photoanodes.
    Xu P; Chang X; Liu R; Wang L; Li X; Zhang X; Yang X; Wang D; Lü W
    Nanoscale Res Lett; 2020 Sep; 15(1):188. PubMed ID: 32990822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ITO@Cu2S tunnel junction nanowire arrays as efficient counter electrode for quantum-dot-sensitized solar cells.
    Jiang Y; Zhang X; Ge QQ; Yu BB; Zou YG; Jiang WJ; Song WG; Wan LJ; Hu JS
    Nano Lett; 2014 Jan; 14(1):365-72. PubMed ID: 24350879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ sulfidation of porous sponge-like CuO/SiW
    Zhang Q; Jin L; Zhang Y; Zhang T; Li F; Xu L
    Dalton Trans; 2021 Apr; 50(13):4519-4526. PubMed ID: 33720235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.