These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 38770019)

  • 41. Prebiotic effect of galacto-
    Matsuzaki C; Takagi H; Saiga S; Kinoshita Y; Yamaguchi M; Higashimura Y; Yamamoto K; Yamaguchi M
    Appl Environ Microbiol; 2024 Mar; 90(3):e0144523. PubMed ID: 38411084
    [TBL] [Abstract][Full Text] [Related]  

  • 42.
    He BL; Xiong Y; Hu TG; Zong MH; Wu H
    Crit Rev Food Sci Nutr; 2023; 63(26):8048-8065. PubMed ID: 35319324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities.
    Poli A; Anzelmo G; Nicolaus B
    Mar Drugs; 2010 Jun; 8(6):1779-802. PubMed ID: 20631870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immunomodulatory Effects of
    Choi YJ; Shin SH; Shin HS
    J Microbiol Biotechnol; 2022 Sep; 32(9):1186-1194. PubMed ID: 36039384
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications.
    Kaur N; Dey P
    Res Microbiol; 2023 May; 174(4):104024. PubMed ID: 36587857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review.
    Zhou Y; Cui Y; Qu X
    Carbohydr Polym; 2019 Mar; 207():317-332. PubMed ID: 30600013
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exopolysaccharide production by salt-tolerant bacteria: Recent advances, current challenges, and future prospects.
    Gan L; Huang X; He Z; He T
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130731. PubMed ID: 38471615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactions of Surface Exopolysaccharides From
    Castro-Bravo N; Wells JM; Margolles A; Ruas-Madiedo P
    Front Microbiol; 2018; 9():2426. PubMed ID: 30364185
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lactic Acid Bacteria-Derived Exopolysaccharides Mitigate the Oxidative Response via the NRF2-KEAP1 Pathway in PC12 Cells.
    Şirin S
    Curr Issues Mol Biol; 2023 Oct; 45(10):8071-8090. PubMed ID: 37886953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exopolysaccharides from lactic acid bacteria: perspectives and challenges.
    Welman AD; Maddox IS
    Trends Biotechnol; 2003 Jun; 21(6):269-74. PubMed ID: 12788547
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action.
    Sarkar A; Mandal S
    Microbiol Res; 2016 Nov; 192():159-171. PubMed ID: 27664734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antiviral Activity of Exopolysaccharides Produced by Lactic Acid Bacteria of the Genera
    Biliavska L; Pankivska Y; Povnitsa O; Zagorodnya S
    Medicina (Kaunas); 2019 Aug; 55(9):. PubMed ID: 31443536
    [No Abstract]   [Full Text] [Related]  

  • 53. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection.
    Fanning S; Hall LJ; Cronin M; Zomer A; MacSharry J; Goulding D; Motherway MO; Shanahan F; Nally K; Dougan G; van Sinderen D
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):2108-13. PubMed ID: 22308390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exopolysaccharides from bacteria and fungi: current status and perspectives in Africa.
    Osemwegie OO; Adetunji CO; Ayeni EA; Adejobi OI; Arise RO; Nwonuma CO; Oghenekaro AO
    Heliyon; 2020 Jun; 6(6):e04205. PubMed ID: 32577572
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immunology and probiotic impact of the newborn and young children intestinal microflora.
    Bezirtzoglou E; Stavropoulou E
    Anaerobe; 2011 Dec; 17(6):369-74. PubMed ID: 21515397
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health.
    Leroy F; De Vuyst L
    J Dairy Sci; 2016 Apr; 99(4):3229-3238. PubMed ID: 26874424
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lactic acid bacteria and bifidobacteria attenuate the proinflammatory response in intestinal epithelial cells induced by Salmonella enterica serovar Typhimurium.
    Carey CM; Kostrzynska M
    Can J Microbiol; 2013 Jan; 59(1):9-17. PubMed ID: 23391223
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exopolysaccharides Producing Bacteria: A Review.
    Netrusov AI; Liyaskina EV; Kurgaeva IV; Liyaskina AU; Yang G; Revin VV
    Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-Wide Assessment of Stress-Associated Genes in Bifidobacteria.
    Schöpping M; Vesth T; Jensen K; Franzén CJ; Zeidan AA
    Appl Environ Microbiol; 2022 Apr; 88(7):e0225121. PubMed ID: 35311508
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective.
    Zuo F; Chen S; Marcotte H
    Biotechnol Adv; 2020 Dec; 45():107654. PubMed ID: 33159984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.