BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38770197)

  • 1. An atlas of trait associations with resting-state and task-evoked human brain functional organizations in the UK Biobank.
    Zhao B; Li T; Li Y; Fan Z; Xiong D; Wang X; Gao M; Smith SM; Zhu H
    Imaging Neurosci (Camb); 2023; 1():1-23. PubMed ID: 38770197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A personalized cortical atlas for functional regions of interest.
    Molloy MF; Osher DE
    J Neurophysiol; 2023 Nov; 130(5):1067-1080. PubMed ID: 37727907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.
    Kozák LR; van Graan LA; Chaudhary UJ; Szabó ÁG; Lemieux L
    Neuroimage; 2017 Dec; 163():319-341. PubMed ID: 28899742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism.
    Balsters JH; Mantini D; Apps MAJ; Eickhoff SB; Wenderoth N
    Neuroimage Clin; 2016; 11():494-507. PubMed ID: 27114898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating methods for measuring background connectivity in slow event-related functional magnetic resonance imaging designs.
    Frank LE; Zeithamova D
    Brain Behav; 2023 Jun; 13(6):e3015. PubMed ID: 37062880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging.
    Vanderwal T; Kelly C; Eilbott J; Mayes LC; Castellanos FX
    Neuroimage; 2015 Nov; 122():222-32. PubMed ID: 26241683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presurgical brain mapping of the language network in pediatric patients with epilepsy using resting-state fMRI.
    Pur DR; Eagleson R; Lo M; Jurkiewicz MT; Andrade A; de Ribaupierre S
    J Neurosurg Pediatr; 2021 Jan; 27(3):259-268. PubMed ID: 33418528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain effective connectivity and functional connectivity as markers of lifespan vascular exposures in middle-aged adults: The Bogalusa Heart Study.
    Chuang KC; Ramakrishnapillai S; Madden K; St Amant J; McKlveen K; Gwizdala K; Dhullipudi R; Bazzano L; Carmichael O
    Front Aging Neurosci; 2023; 15():1110434. PubMed ID: 36998317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous Activity Patterns in Human Attention Networks Code for Hand Movements.
    Zhang L; Pini L; Kim D; Shulman GL; Corbetta M
    J Neurosci; 2023 Mar; 43(11):1976-1986. PubMed ID: 36788030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitudes of resting-state functional networks - investigation into their correlates and biophysical properties.
    Lee S; Bijsterbosch JD; Almagro FA; Elliott L; McCarthy P; Taschler B; Sala-Llonch R; Beckmann CF; Duff EP; Smith SM; Douaud G
    Neuroimage; 2023 Jan; 265():119779. PubMed ID: 36462729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory, somatomotor and internal mentation networks emerge dynamically in the resting brain with internal mentation predominating in older age.
    Zhang L; Zhao J; Zhou Q; Liu Z; Zhang Y; Cheng W; Gong W; Hu X; Lu W; Bullmore ET; Lo CZ; Feng J
    Neuroimage; 2021 Aug; 237():118188. PubMed ID: 34020018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State and Trait Components of Functional Connectivity: Individual Differences Vary with Mental State.
    Geerligs L; Rubinov M; Cam-Can ; Henson RN
    J Neurosci; 2015 Oct; 35(41):13949-61. PubMed ID: 26468196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.
    Xu T; Cullen KR; Mueller B; Schreiner MW; Lim KO; Schulz SC; Parhi KK
    Neuroimage Clin; 2016; 11():302-315. PubMed ID: 26977400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study.
    Klumpers LE; Cole DM; Khalili-Mahani N; Soeter RP; Te Beek ET; Rombouts SA; van Gerven JM
    Neuroimage; 2012 Nov; 63(3):1701-11. PubMed ID: 22885247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain network profiling defines functionally specialized cortical networks.
    Di Plinio S; Ebisch SJH
    Hum Brain Mapp; 2018 Dec; 39(12):4689-4706. PubMed ID: 30076763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations between insomnia symptoms and functional connectivity in the UK Biobank cohort (n = 29,423).
    Holub F; Petri R; Schiel J; Feige B; Rutter MK; Tamm S; Riemann D; Kyle SD; Spiegelhalder K
    J Sleep Res; 2023 Apr; 32(2):e13790. PubMed ID: 36528860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining task-related activation and connectivity analysis of fMRI data reveals complex modulation of brain networks.
    Gerchen MF; Kirsch P
    Hum Brain Mapp; 2017 Nov; 38(11):5726-5739. PubMed ID: 28782871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.