These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38770286)

  • 61. Robust Kalman Filter Aided GEO/IGSO/GPS Raw-PPP/INS Tight Integration.
    Gao Z; Li Y; Zhuang Y; Yang H; Pan Y; Zhang H
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669595
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Initial Assessment of the LEO Based Navigation Signal Augmentation System from Luojia-1A Satellite.
    Wang L; Chen R; Li D; Zhang G; Shen X; Yu B; Wu C; Xie S; Zhang P; Li M; Pan Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30441781
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Performance Evaluation of Real-Time Kinematic Global Navigation Satellite System with Survey-Grade Receivers and Short Observation Times in Forested Areas.
    Cățeanu M; Moroianu MA
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409444
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Real-time Precise Point Positioning with a Xiaomi MI 8 Android Smartphone.
    Chen B; Gao C; Liu Y; Sun P
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242704
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations.
    Zhao Q; Wang G; Liu Z; Hu Z; Dai Z; Liu J
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805831
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Improving the Performance of Time-Relative GNSS Precise Positioning in Remote Areas.
    He K; Weng D; Ji S; Wang Z; Chen W; Lu Y; Nie Z
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406691
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Algorithms Research and Precision Comparison of Different Frequency Combinations of BDS-3\GPS\Galileo for Precise Point Positioning in Asia-Pacific Region.
    Gao M; Cao Z; Meng Z; Tan C; Zhu H; Huang L
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447784
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations.
    Tu R; Zhang R; Lu C; Zhang P; Liu J; Lu X
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273814
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An Extended ADOP for Performance Evaluation of Single-Frequency Single-Epoch Positioning by BDS/GPS in Asia-Pacific Region.
    Liu X; Zhang S; Zhang Q; Yang W
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28973977
    [TBL] [Abstract][Full Text] [Related]  

  • 70. GNSS Timing Performance Assessment and Results Analysis.
    Zhu L; Zhang H; Li X; Zhu F; Liu Y
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408101
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou.
    Sun Y; Xue R; Zhao D; Wang D
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28475142
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An Analytical Model for BDS B1 Spreading Code Self-Interference Evaluation Considering NH Code Effects.
    Zhang X; Zhan X; Feng S; Ochieng W
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28333120
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother.
    Zhang Q; Yang W; Zhang S; Liu X
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29329243
    [TBL] [Abstract][Full Text] [Related]  

  • 74. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections.
    Geng T; Su X; Fang R; Xie X; Zhao Q; Liu J
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999384
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Performance Analysis of BDS Medium-Long Baseline RTK Positioning Using an Empirical Troposphere Model.
    Shu B; Liu H; Xu L; Qian C; Gong X; An X
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29661999
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Novel Error Correction Approach to Improve Standard Point Positioning of Integrated BDS/GPS.
    Du L; Ji J; Pei Z; Chen W
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138075
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations.
    Gao W; Gao C; Pan S; Wang D; Deng J
    Sensors (Basel); 2015 Oct; 15(11):27525-42. PubMed ID: 26528977
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Precise point positioning with the BeiDou navigation satellite system.
    Li M; Qu L; Zhao Q; Guo J; Su X; Li X
    Sensors (Basel); 2014 Jan; 14(1):927-43. PubMed ID: 24406856
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data.
    Pan L; Guo F
    Sci Rep; 2018 Nov; 8(1):17067. PubMed ID: 30459438
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Method of Evaluating the Positioning System Capability for Complying with the Minimum Accuracy Requirements for the International Hydrographic Organization Orders.
    Specht M
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.