These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38770746)

  • 1. Accelerating the Development of LLZO in Solid-State Batteries Toward Commercialization: A Comprehensive Review.
    Wang Y; Chen Z; Jiang K; Shen Z; Passerini S; Chen M
    Small; 2024 Aug; 20(35):e2402035. PubMed ID: 38770746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.
    Wang C; Fu K; Kammampata SP; McOwen DW; Samson AJ; Zhang L; Hitz GT; Nolan AM; Wachsman ED; Mo Y; Thangadurai V; Hu L
    Chem Rev; 2020 May; 120(10):4257-4300. PubMed ID: 32271022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the feasibility of all-solid-state batteries with LLZO as a single electrolyte.
    Kravchyk KV; Karabay DT; Kovalenko MV
    Sci Rep; 2022 Jan; 12(1):1177. PubMed ID: 35064183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amorphous Phase Induced Lithium Dendrite Suppression in Glass-Ceramic Garnet-Type Solid Electrolytes.
    Hoinkis N; Schuhmacher J; Fuchs T; Leukel S; Loho C; Roters A; Richter FH; Janek J
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28692-28704. PubMed ID: 37254535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization.
    Dai J; Yang C; Wang C; Pastel G; Hu L
    Adv Mater; 2018 Nov; 30(48):e1802068. PubMed ID: 30302834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-State Electrolytes and Electrode/Electrolyte Interfaces in Rechargeable Batteries.
    Chai S; He Q; Zhou J; Chang Z; Pan A; Zhou H
    ChemSusChem; 2024 Feb; 17(3):e202301268. PubMed ID: 37845180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective on design and technical challenges of Li-garnet solid-state batteries.
    Kravchyk KV; Kovalenko MV
    Sci Technol Adv Mater; 2022; 23(1):2018919. PubMed ID: 35069012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid Interfaces for the Garnet Electrolytes.
    Feng W; Zhao Y; Xia Y
    Adv Mater; 2024 Apr; 36(15):e2306111. PubMed ID: 38216304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for Enhancing the Stability of Lithium Metal Anodes in Solid-State Electrolytes.
    Lee H; Yoon T; Chae OB
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in
    Zhang L; Fan H; Dang Y; Zhuang Q; Arandiyan H; Wang Y; Cheng N; Sun H; Pérez Garza HH; Zheng R; Wang Z; S Mofarah S; Koshy P; Bhargava SK; Cui Y; Shao Z; Liu Y
    Mater Horiz; 2023 May; 10(5):1479-1538. PubMed ID: 37040188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Formed Shields Enabling Li
    Wu JF; Pu BW; Wang D; Shi SQ; Zhao N; Guo X; Guo X
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):898-905. PubMed ID: 30516385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Garnet Li
    Liu M; Xie W; Li B; Wang Y; Li G; Zhang S; Wen Y; Qiu J; Chen J; Zhao P
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43116-43126. PubMed ID: 36121712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathode Interface Compatibility of Amorphous LiMn
    Delluva AA; Dudoff J; Teeter G; Holewinski A
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24992-24999. PubMed ID: 32368893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling Interfacial Li-Ion Dynamics in Li
    Bonilla MR; García Daza FA; Ranque P; Aguesse F; Carrasco J; Akhmatskaya E
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30653-30667. PubMed ID: 34161063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H
    Tang J; Niu Y; Zhou Y; Chen S; Yang Y; Huang X; Tian B
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5345-5356. PubMed ID: 36657037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility.
    Kim S; Kim JS; Miara L; Wang Y; Jung SK; Park SY; Song Z; Kim H; Badding M; Chang J; Roev V; Yoon G; Kim R; Kim JH; Yoon K; Im D; Kang K
    Nat Commun; 2022 Apr; 13(1):1883. PubMed ID: 35388012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Li Metal Anode for Garnet-Based Solid-State Batteries.
    Wang T; Luo W; Huang Y
    Acc Chem Res; 2023 Mar; 56(6):667-676. PubMed ID: 36848173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.
    Fu KK; Gong Y; Liu B; Zhu Y; Xu S; Yao Y; Luo W; Wang C; Lacey SD; Dai J; Chen Y; Mo Y; Wachsman E; Hu L
    Sci Adv; 2017 Apr; 3(4):e1601659. PubMed ID: 28435874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability.
    Abrha LH; Hagos TT; Nikodimos Y; Bezabh HK; Berhe GB; Hagos TM; Huang CJ; Tegegne WA; Jiang SK; Weldeyohannes HH; Wu SH; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25709-25717. PubMed ID: 32407073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries.
    Lan X; Luo N; Li Z; Peng J; Cheng HM
    ACS Nano; 2024 Apr; 18(13):9285-9310. PubMed ID: 38522089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.