These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38770788)

  • 1. A three-dimensional, discrete-continuum model of blood pressure in microvascular networks.
    Sweeney PW; Walsh C; Walker-Samuel S; Shipley RJ
    Int J Numer Method Biomed Eng; 2024 Aug; 40(8):e3832. PubMed ID: 38770788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
    Shipley RJ; Smith AF; Sweeney PW; Pries AR; Secomb TW
    Math Med Biol; 2020 Feb; 37(1):40-57. PubMed ID: 30892609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.
    Hyde ER; Michler C; Lee J; Cookson AN; Chabiniok R; Nordsletten DA; Smith NP
    Med Biol Eng Comput; 2013 May; 51(5):557-70. PubMed ID: 23345008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth-dependent flow and pressure characteristics in cortical microvascular networks.
    Schmid F; Tsai PS; Kleinfeld D; Jenny P; Weber B
    PLoS Comput Biol; 2017 Feb; 13(2):e1005392. PubMed ID: 28196095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex.
    Peyrounette M; Davit Y; Quintard M; Lorthois S
    PLoS One; 2018; 13(1):e0189474. PubMed ID: 29324784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myofibre injury induces capillary disruption and regeneration of disorganized microvascular networks.
    Jacobsen NL; Norton CE; Shaw RL; Cornelison DDW; Segal SS
    J Physiol; 2022 Jan; 600(1):41-60. PubMed ID: 34761825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based algorithms for microvessel classification.
    Smith AF; Secomb TW; Pries AR; Smith NP; Shipley RJ
    Microcirculation; 2015 Feb; 22(2):99-108. PubMed ID: 25403335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational modeling of blood flow in asymmetrically bifurcating microvessels and its experimental validation.
    Lee TR; Hong JA; Yoo SS; Kim DW
    Int J Numer Method Biomed Eng; 2018 Jun; 34(6):e2981. PubMed ID: 29521012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of generated parallel capillary arrays to three-dimensional reconstructed capillary networks in modeling oxygen transport in discrete microvascular volumes.
    Fraser GM; Goldman D; Ellis CG
    Microcirculation; 2013 Nov; 20(8):748-63. PubMed ID: 23841679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply.
    Gould IG; Tsai P; Kleinfeld D; Linninger A
    J Cereb Blood Flow Metab; 2017 Jan; 37(1):52-68. PubMed ID: 27780904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of capillary pericytes in the integration of spontaneous Ca
    Hashitani H; Mitsui R; Miwa-Nishimura K; Lam M
    J Physiol; 2018 Aug; 596(16):3531-3552. PubMed ID: 29873405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries.
    Bateman RM; Sharpe MD; Jagger JE; Ellis CG
    Crit Care; 2015 Nov; 19():389. PubMed ID: 26537126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular hemodynamics in the chick chorioallantoic membrane.
    Smith AF; Nitzsche B; Maibier M; Pries AR; Secomb TW
    Microcirculation; 2016 Oct; 23(7):512-522. PubMed ID: 27510444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid and protein exchange in microvascular networks: Importance of modelling heterogeneity in geometrical and biophysical properties.
    Guidoboni G; Marazzi NM; Fraser J; Sacco R; Palaniappan K; Huxley VH
    J Physiol; 2021 Oct; 599(20):4597-4624. PubMed ID: 34387386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary filtration coefficient is independent of number of perfused capillaries in cat skeletal muscle.
    Bentzer P; Kongstad L; Grände PO
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2697-706. PubMed ID: 11356626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical model of blood flow in a coronary capillary.
    Fibich G; Lanir Y; Liron N
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1829-40. PubMed ID: 8238597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.