These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 38771417)

  • 21. Comparison of NF-RO and RO-NF for the Treatment of Mature Landfill Leachates: A Guide for Landfill Operators.
    Ramaswami S; Behrendt J; Otterpohl R
    Membranes (Basel); 2018 Mar; 8(2):. PubMed ID: 29561806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current status and future directions of self-assembled block copolymer membranes for molecular separations.
    Lang C; Kumar M; Hickey RJ
    Soft Matter; 2021 Dec; 17(46):10405-10415. PubMed ID: 34768280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review.
    Wu Y; Chen M; Lee HJ; A Ganzoury M; Zhang N; de Lannoy CF
    ACS ES T Eng; 2022 Sep; 2(9):1574-1598. PubMed ID: 36120114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.
    D'Haese A; Le-Clech P; Van Nevel S; Verbeken K; Cornelissen ER; Khan SJ; Verliefde AR
    Water Res; 2013 Sep; 47(14):5232-44. PubMed ID: 23866149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aminophosphonates in Nanofiltration and Reverse Osmosis Permeates.
    Kuhn R; Vornholt C; Preuß V; Bryant IM; Martienssen M
    Membranes (Basel); 2021 Jun; 11(6):. PubMed ID: 34203777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.
    Kim TU; Drewes JE; Scott Summers R; Amy GL
    Water Res; 2007 Sep; 41(17):3977-88. PubMed ID: 17631378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review.
    Ricci E; Minelli M; De Angelis MG
    Membranes (Basel); 2022 Aug; 12(9):. PubMed ID: 36135877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled TiO
    Zhou X; Zhao YY; Kim SR; Elimelech M; Hu S; Kim JH
    Environ Sci Technol; 2018 Dec; 52(24):14311-14320. PubMed ID: 30516046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes.
    Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G
    J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations.
    Chen X; Boo C; Yip NY
    Water Res; 2021 Aug; 201():117311. PubMed ID: 34192614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Selected Polymeric Membranes Used in the Separation and Recovery of Palladium-Based Catalyst Systems.
    Xaba BM; Modise SJ; Okoli BJ; Monapathi ME; Nelana S
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32731324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Organic Solvent Nanofiltration Rely on Physical Chemistry and Polymer Chemistry.
    Galizia M; Bye KP
    Front Chem; 2018; 6():511. PubMed ID: 30406088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward.
    Goh PS; Ahmad NA; Wong TW; Yogarathinam LT; Ismail AF
    Chemosphere; 2022 Nov; 307(Pt 3):136018. PubMed ID: 35973494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A systematic approach towards optimization of brackish groundwater treatment using nanofiltration (NF) and reverse osmosis (RO) hybrid membrane filtration system.
    Srivastava A; Singh R; Rajput VD; Minkina T; Agarwal S; Garg MC
    Chemosphere; 2022 Sep; 303(Pt 3):135230. PubMed ID: 35688189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process.
    Tay MF; Liu C; Cornelissen ER; Wu B; Chong TH
    Water Res; 2018 Feb; 129():180-189. PubMed ID: 29149673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.
    Dražević E; Košutić K; Svalina M; Catalano J
    Water Res; 2017 Jun; 116():13-22. PubMed ID: 28292676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification.
    Yang Z; Zhou Y; Feng Z; Rui X; Zhang T; Zhang Z
    Polymers (Basel); 2019 Jul; 11(8):. PubMed ID: 31362430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
    Yang L; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Jun; 116():116-125. PubMed ID: 28324708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of organic contaminants by RO and NF membranes.
    Yoon Y; Lueptow RM
    J Memb Sci; 2005 Sep; 261(1-2):76-86. PubMed ID: 16134262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does hindered transport theory apply to desalination membranes?
    Dražević E; Košutić K; Kolev V; Freger V
    Environ Sci Technol; 2014 Oct; 48(19):11471-8. PubMed ID: 25137614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.