These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 38771417)

  • 41. Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges.
    Zhu X; Jassby D
    Acc Chem Res; 2019 May; 52(5):1177-1186. PubMed ID: 31032611
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal, Adsorption, and Cleaning of Pharmaceutical on Polyamide RO and NF Membranes.
    Dolar D; Ćurić I; Ašperger D
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination.
    Raju M; Govindaraju PB; van Duin ACT; Ihme M
    Nanoscale; 2018 Feb; 10(8):3969-3980. PubMed ID: 29424378
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes.
    Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC
    Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.
    Shen J; Schäfer AI
    Sci Total Environ; 2015 Sep; 527-528():520-9. PubMed ID: 26005995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond.
    Lau HS; Lau SK; Soh LS; Hong SU; Gok XY; Yi S; Yong WF
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling nanofiltration of electrolyte solutions.
    Yaroshchuk A; Bruening ML; Zholkovskiy E
    Adv Colloid Interface Sci; 2019 Jun; 268():39-63. PubMed ID: 30951927
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multimodal confined water dynamics in reverse osmosis polyamide membranes.
    Foglia F; Frick B; Nania M; Livingston AG; Cabral JT
    Nat Commun; 2022 May; 13(1):2809. PubMed ID: 35589719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of multiple pesticides from water by different types of membranes.
    Seah MQ; Ng ZC; Lai GS; Lau WJ; Al-Ghouti MA; Alias NH; Ismail AF
    Chemosphere; 2024 May; 356():141960. PubMed ID: 38604517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T
    Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide.
    Coronell O; Mi B; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates.
    Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reverse osmosis and nanofiltration of biologically treated leachate.
    Kuusik A; Pachel K; Kuusik A; Loigu E; Tang WZ
    Environ Technol; 2014; 35(17-20):2416-26. PubMed ID: 25145196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a pH and Temperature-Responsive Pentablock Co-Polymer.
    Bar C; Çağlar N; Uz M; Mallapragada SK; Altinkaya SA
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31367-31377. PubMed ID: 31424905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Membrane fouling behaviors in a full-scale zero liquid discharge system for cold-rolling wastewater brine treatment: A comprehensive analysis on multiple membrane processes.
    Wang H; Dai R; Wang L; Wang X; Wang Z
    Water Res; 2022 Nov; 226():119221. PubMed ID: 36242936
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Applications of carbon quantum dots (CQDs) in membrane technologies: A review.
    Zhao DL; Chung TS
    Water Res; 2018 Dec; 147():43-49. PubMed ID: 30296608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tunable organic solvent nanofiltration in self-assembled membranes at the sub-1 nm scale.
    Zhang Y; Kim D; Dong R; Feng X; Osuji CO
    Sci Adv; 2022 Mar; 8(11):eabm5899. PubMed ID: 35294234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.