These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 387715)
21. Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii. Gangeswaran R; Lowe DJ; Eady RR Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):335-42. PubMed ID: 8380991 [TBL] [Abstract][Full Text] [Related]
22. Molybdoenzyme biosynthesis in Escherichia coli: in vitro activation of purified nitrate reductase from a chlB mutant. Santini CL; Iobbi-Nivol C; Romane C; Boxer DH; Giordano G J Bacteriol; 1992 Dec; 174(24):7934-40. PubMed ID: 1459941 [TBL] [Abstract][Full Text] [Related]
23. Direct transfer of molybdopterin cofactor to aponitrate reductase from a carrier protein in Chlamydomonas reinhardtii. Aguilar M; Kalakoutskii K; Cárdenas J; Fernández E FEBS Lett; 1992 Jul; 307(2):162-3. PubMed ID: 1644169 [TBL] [Abstract][Full Text] [Related]
24. Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli. del Campillo-Campbell A; Campbell A J Bacteriol; 1982 Feb; 149(2):469-78. PubMed ID: 6460021 [TBL] [Abstract][Full Text] [Related]
25. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis. Johnson ME; Rajagopalan KV J Bacteriol; 1987 Jan; 169(1):117-25. PubMed ID: 2947896 [TBL] [Abstract][Full Text] [Related]
26. Molybdenum cofactor biosynthesis in humans. Identification of two complementation groups of cofactor-deficient patients and preliminary characterization of a diffusible molybdopterin precursor. Johnson JL; Wuebbens MM; Mandell R; Shih VE J Clin Invest; 1989 Mar; 83(3):897-903. PubMed ID: 2522104 [TBL] [Abstract][Full Text] [Related]
27. The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form. Witte CP; Igeño MI; Mendel R; Schwarz G; Fernández E FEBS Lett; 1998 Jul; 431(2):205-9. PubMed ID: 9708903 [TBL] [Abstract][Full Text] [Related]
28. Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli. Blasco F; Pommier J; Augier V; Chippaux M; Giordano G Mol Microbiol; 1992 Jan; 6(2):221-30. PubMed ID: 1545706 [TBL] [Abstract][Full Text] [Related]
29. Molybdenum cofactor properties and [Fe-S] cluster coordination in Escherichia coli nitrate reductase A: investigation by site-directed mutagenesis of the conserved his-50 residue in the NarG subunit. Magalon A; Asso M; Guigliarelli B; Rothery RA; Bertrand P; Giordano G; Blasco F Biochemistry; 1998 May; 37(20):7363-70. PubMed ID: 9585550 [TBL] [Abstract][Full Text] [Related]
30. The nature of molybdenum-cofactor. Lee KY Zhonghua Min Guo Wei Sheng Wu Xue Za Zhi; 1978 Mar; 11(1):21-9. PubMed ID: 150967 [TBL] [Abstract][Full Text] [Related]
31. Molybdenum cofactor from the cytoplasmic membrane of Proteus mirabilis. Claassen VP; Oltmann LF; Vader CE; van 't Riet J; Stouthamer AH Arch Microbiol; 1982 Dec; 133(4):283-8. PubMed ID: 6763509 [TBL] [Abstract][Full Text] [Related]
32. chlD gene function in molybdate activation of nitrate reductase. Sperl GT; DeMoss JA J Bacteriol; 1975 Jun; 122(3):1230-8. PubMed ID: 1097396 [TBL] [Abstract][Full Text] [Related]
33. Characterization of moeB--part of the molybdenum cofactor biosynthesis gene cluster in Staphylococcus carnosus. Neubauer H; Pantel I; Götz F FEMS Microbiol Lett; 1998 Jul; 164(1):55-62. PubMed ID: 9675851 [TBL] [Abstract][Full Text] [Related]
34. Evidence for a pterin-derivative associated with the molybdenum cofactor of Neurospora crassa nitrate reductase. Siefermann-Harms D; Fritz B; Ninnemann H Photochem Photobiol; 1985 Dec; 42(6):771-8. PubMed ID: 2937070 [No Abstract] [Full Text] [Related]
35. In vitro incorporation of molybdate into demolybdoproteins in Escherichia coli. Scott RH; Sperl GT; DeMoss JA J Bacteriol; 1979 Feb; 137(2):719-26. PubMed ID: 370097 [TBL] [Abstract][Full Text] [Related]
36. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli. Palmer T; Vasishta A; Whitty PW; Boxer DH Eur J Biochem; 1994 Jun; 222(2):687-92. PubMed ID: 8020507 [TBL] [Abstract][Full Text] [Related]
37. Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli. Takagi M; Tsuchiya T; Ishimoto M J Bacteriol; 1981 Dec; 148(3):762-8. PubMed ID: 7031034 [TBL] [Abstract][Full Text] [Related]
38. ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli. Anderson LA; McNairn E; Lubke T; Pau RN; Boxer DH J Bacteriol; 2000 Dec; 182(24):7035-43. PubMed ID: 11092866 [TBL] [Abstract][Full Text] [Related]
39. Isolation of two Arabidopsis cDNAs involved in early steps of molybdenum cofactor biosynthesis by functional complementation of Escherichia coli mutants. Hoff T; Schnorr KM; Meyer C; Caboche M J Biol Chem; 1995 Mar; 270(11):6100-7. PubMed ID: 7890743 [TBL] [Abstract][Full Text] [Related]
40. Escherichia coli MoeA and MogA. Function in metal incorporation step of molybdenum cofactor biosynthesis. Nichols J; Rajagopalan KV J Biol Chem; 2002 Jul; 277(28):24995-5000. PubMed ID: 12006571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]