BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38771940)

  • 1. Molecular Environment Modulates CO
    Murillo-Lopez JA; Villegas-Escobar N; Vogt-Geisse S; Vöhringer-Martinez E
    J Phys Chem B; 2024 Jun; 128(22):5327-5335. PubMed ID: 38771940
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Shen J; Wu W; Wang K; Wu J; Liu B; Li C; Gong Z; Hong X; Fang H; Zhang X; Xu X
    mBio; 2024 May; 15(5):e0341423. PubMed ID: 38572988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the carboxylate delivery module of transcarboxylase: following spontaneous decarboxylation of the 1.3S-CO2- subunit by NMR and FTIR spectroscopies.
    Rivera-Hainaj RE; Pusztai-Carey M; Venkat Reddy D; Choowongkomon K; Sönnichsen FD; Carey PR
    Biochemistry; 2002 Feb; 41(7):2191-7. PubMed ID: 11841210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally diverse biotin-dependent enzymes with oxaloacetate decarboxylase activity.
    Lietzan AD; St Maurice M
    Arch Biochem Biophys; 2014 Feb; 544():75-86. PubMed ID: 24184447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase.
    Lietzan AD; St Maurice M
    J Biol Chem; 2013 Jul; 288(27):19915-25. PubMed ID: 23698000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biotin enzyme family: conserved structural motifs and domain rearrangements.
    Jitrapakdee S; Wallace JC
    Curr Protein Pept Sci; 2003 Jun; 4(3):217-29. PubMed ID: 12769720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carboxyl transferase component of acetyl CoA carboxylase: structural evidence for intersubunit translocation of the biotin prosthetic group.
    Guchhait RB; Moss J; Sokolski W; Lane MD
    Proc Natl Acad Sci U S A; 1971 Mar; 68(3):653-7. PubMed ID: 5276776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Adina-Zada A; Jitrapakdee S; Surinya KH; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9724-37. PubMed ID: 21957995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis for the Mechanism of ATP-Dependent Acetone Carboxylation.
    Mus F; Eilers BJ; Alleman AB; Kabasakal BV; Wells JN; Murray JW; Nocek BP; DuBois JL; Peters JW
    Sci Rep; 2017 Aug; 7(1):7234. PubMed ID: 28775283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of biotin and oxamate in the carboxyltransferase reaction of pyruvate carboxylase.
    Lietzan AD; Lin Y; St Maurice M
    Arch Biochem Biophys; 2014 Nov; 562():70-9. PubMed ID: 25157442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early evolution of the biotin-dependent carboxylase family.
    Lombard J; Moreira D
    BMC Evol Biol; 2011 Aug; 11():232. PubMed ID: 21827699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, mechanism and regulation of pyruvate carboxylase.
    Jitrapakdee S; St Maurice M; Rayment I; Cleland WW; Wallace JC; Attwood PV
    Biochem J; 2008 Aug; 413(3):369-87. PubMed ID: 18613815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the mechanism and regulation of pyruvate carboxylase by characterisation of a biotin-deficient mutant of the Bacillus thermodenitrificans enzyme.
    Adina-Zada A; Jitrapakdee S; Surinya KH; McIldowie MJ; Piggott MJ; Cleland WW; Wallace JC; Attwood PV
    Int J Biochem Cell Biol; 2008; 40(9):1743-52. PubMed ID: 18272421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism.
    Chou CY; Yu LP; Tong L
    J Biol Chem; 2009 Apr; 284(17):11690-7. PubMed ID: 19213731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotin-bound CO2 and the mechanism of enzymatic carboxylation reactions.
    Bruice TC; Hegarty AF
    Proc Natl Acad Sci U S A; 1970 Apr; 65(4):805-9. PubMed ID: 5266151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The enzymes of biotin dependent CO₂ metabolism: what structures reveal about their reaction mechanisms.
    Waldrop GL; Holden HM; St Maurice M
    Protein Sci; 2012 Nov; 21(11):1597-619. PubMed ID: 22969052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.
    Wei J; Tong L
    Nature; 2015 Oct; 526(7575):723-7. PubMed ID: 26458104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Enzyme-Catalyzed CO
    Aleku GA; Roberts GW; Titchiner GR; Leys D
    ChemSusChem; 2021 Apr; 14(8):1781-1804. PubMed ID: 33631048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.