These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38772262)

  • 1. Glutathione-mediated copper sulfide nanoplatforms with morphological and vacancy-dependent photothermal catalytic activity for multi-model tannic acid assays.
    Wang X; Liu W; Ma H; Li H; Wang J; Wang D
    J Colloid Interface Sci; 2024 Sep; 670():460-472. PubMed ID: 38772262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared responsive sulfur vacancy-rich CuS nanosheets for efficient antibacterial activity via synergistic photothermal and photodynamic pathways.
    Mo S; Song Y; Lin M; Wang J; Zhang Z; Sun J; Guo D; Liu L
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2896-2906. PubMed ID: 34785058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Cu
    Xu L; Zhang J; Zhao J; Liu C; Li N; Zhang S; Wang Z; Xi M
    ACS Appl Bio Mater; 2022 Apr; 5(4):1658-1669. PubMed ID: 35289599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Peroxidase-like Activity of CuS Hollow Nanocages by Plasmon-Induced Hot Carriers and Photothermal Effect for the Dual-Mode Detection of Tannic Acid.
    Wu S; Zhang P; Jiang Z; Zhang W; Gong X; Wang Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40191-40199. PubMed ID: 36004449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent Bi
    Chen X; Qiu M; Liu L; Ji Q; Xu Z; Xiong Z; Yang S
    J Colloid Interface Sci; 2022 Nov; 625():614-627. PubMed ID: 35764043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synergistic effect of enhanced photocatalytic activity and photothermal effect of oxygen-deficient Ni/reduced graphene oxide nanocomposite for rapid disinfection under near-infrared irradiation.
    Zhang Z; Sun J; Chen X; Wu G; Jin Z; Guo D; Liu L
    J Hazard Mater; 2021 Oct; 419():126462. PubMed ID: 34214854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the atomic-level vacancy modulation in Cu
    Sun J; Wen J; Wang J; Yang Y; Wang G; Liu J; Yu Q; Liu M
    J Hazard Mater; 2023 Jun; 451():131082. PubMed ID: 36870131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible Fe
    Liu PY; Miao ZH; Li K; Yang H; Zhen L; Xu CY
    Colloids Surf B Biointerfaces; 2018 Jul; 167():183-190. PubMed ID: 29653369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors.
    Bai J; Peng C; Lv W; Liu J; Hei Y; Bo X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39055-39065. PubMed ID: 34433248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiN/anatase/rutile phase junction obtained by in-situ thermal transformation for efficient photothermal-assisted photocatalytic hydrogen generation.
    Zhao WQ; Liao YX; Chen YT; Ma L; Yu ZY; Ding SJ; Qin PL; Chen XB; Wang QQ
    J Colloid Interface Sci; 2024 Sep; 669():383-392. PubMed ID: 38718591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacancy-Modulated of CuS for Highly Antibacterial Efficiency via Photothermal/Photodynamic Synergetic Therapy.
    Zhang Z; Wen J; Zhang J; Guo D; Zhang Q
    Adv Healthc Mater; 2023 Jan; 12(1):e2201746. PubMed ID: 36303519
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Shi J; Zhang J; Cui Z; Chu S; Wang Y; Zou Z
    Dalton Trans; 2022 Apr; 51(15):5841-5858. PubMed ID: 35343533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Photocatalytic Activity of Bi
    Bai J; Li Y; Wei P; Liu J; Chen W; Liu L
    Small; 2019 Jun; 15(23):e1900020. PubMed ID: 31018044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering oxygen vacancy of MoO
    Zhang R; Liu C; Zhao R; Du Y; Yang D; Ding H; Yang G; Gai S; He F; Yang P
    J Colloid Interface Sci; 2022 Oct; 623():155-167. PubMed ID: 35576647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen vacancy engineering of TiO
    Bian L; Wang N; Tuersong K; Kaidierdan A; Li J; Gong J
    Colloids Surf B Biointerfaces; 2023 Sep; 229():113427. PubMed ID: 37441839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic doping induced sulfur vacancy formation in polyionic sulfide for enhanced electromagnetic wave absorption.
    Hui S; Zhang L; Wu H
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):147-155. PubMed ID: 36152572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Solar-Driven Photocatalytic Activity of BiOI Nanosheets through Predominant Exposed High Energy Facets and Vacancy Engineering.
    Bai J; Sun J; Zhu X; Liu J; Zhang H; Yin XB; Liu L
    Small; 2020 Feb; 16(5):e1904783. PubMed ID: 31943792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic and photoresponsive BiZ/Cu
    Nain A; Huang HH; Chevrier DM; Tseng YT; Sangili A; Lin YF; Huang YF; Chang L; Chang FC; Huang CC; Tseng FG; Chang HT
    Nanoscale; 2021 Nov; 13(44):18632-18646. PubMed ID: 34734624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-In-One Second Near-Infrared Light-Responsive Drug Delivery System for Synergistic Chemo-Photothermal Therapy.
    Zhou T; Xie S; Zhou C; Chen Y; Li H; Liu P; Jiang R; Hang L; Jiang G
    ACS Appl Bio Mater; 2022 Aug; 5(8):3841-3849. PubMed ID: 35815771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Ultrathin Cu
    Zhou S; Zhang LJ; Li J; Tung CH; Wu LZ
    Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407836. PubMed ID: 38752620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.