BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38772322)

  • 1. Iron transporter1 OsIRT1 positively regulates saline-alkaline stress tolerance in Oryza sativa.
    Duan X; Xu Y; Liu Y; Xu X; Wen L; Fang J; Yu Y
    J Plant Physiol; 2024 Aug; 299():154272. PubMed ID: 38772322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.).
    Li Q; Yang A; Zhang WH
    J Exp Bot; 2016 Dec; 67(22):6431-6444. PubMed ID: 27811002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice.
    Lee S; An G
    Plant Cell Environ; 2009 Apr; 32(4):408-16. PubMed ID: 19183299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brassinosteroids are involved in Fe homeostasis in rice (Oryza sativa L.).
    Wang B; Li G; Zhang WH
    J Exp Bot; 2015 May; 66(9):2749-61. PubMed ID: 25770588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SET DOMAIN GROUP 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake.
    Liu Y; Chen X; Xue S; Quan T; Cui D; Han L; Cong W; Li M; Yun DJ; Liu B; Xu ZY
    Plant Biotechnol J; 2021 Dec; 19(12):2576-2588. PubMed ID: 34416090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa.
    Wu J; Wang C; Zheng L; Wang L; Chen Y; Whelan J; Shou H
    J Exp Bot; 2011 Jan; 62(2):667-74. PubMed ID: 21112958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium transporter OsHAK17 may contribute to saline-alkaline tolerant mechanisms in rice (Oryza sativa).
    Nampei M; Ogi H; Sreewongchai T; Nishida S; Ueda A
    J Plant Res; 2024 May; 137(3):505-520. PubMed ID: 38427146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+.
    Ishimaru Y; Suzuki M; Tsukamoto T; Suzuki K; Nakazono M; Kobayashi T; Wada Y; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Plant J; 2006 Feb; 45(3):335-46. PubMed ID: 16412081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress.
    Li Q; Ma C; Tai H; Qiu H; Yang A
    PLoS One; 2020; 15(12):e0243112. PubMed ID: 33259539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A receptor-like protein RMC is involved in regulation of iron acquisition in rice.
    Yang A; Li Y; Xu Y; Zhang WH
    J Exp Bot; 2013 Nov; 64(16):5009-20. PubMed ID: 24014863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.
    Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK
    PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.
    Yang A; Zhang WH
    Plant Cell Physiol; 2016 Jun; 57(6):1271-80. PubMed ID: 27257291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress.
    Kabir AH
    Plant Biol (Stuttg); 2016 Jul; 18(4):710-9. PubMed ID: 26804776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Combined Strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa).
    Wairich A; de Oliveira BHN; Arend EB; Duarte GL; Ponte LR; Sperotto RA; Ricachenevsky FK; Fett JP
    Sci Rep; 2019 Nov; 9(1):16144. PubMed ID: 31695138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Na
    Chuamnakthong S; Nampei M; Ueda A
    Plant Sci; 2019 Oct; 287():110171. PubMed ID: 31481219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa).
    Qi Y; Wang S; Shen C; Zhang S; Chen Y; Xu Y; Liu Y; Wu Y; Jiang D
    New Phytol; 2012 Jan; 193(1):109-120. PubMed ID: 21973088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium/calmodulin-dependent protein kinase OsDMI3 positively regulates saline-alkaline tolerance in rice roots.
    Ni L; Wang S; Shen T; Wang Q; Chen C; Xia J; Jiang M
    Plant Signal Behav; 2020 Nov; 15(11):1813999. PubMed ID: 32857669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OsSAP6 Positively Regulates Soda Saline-Alkaline Stress Tolerance in Rice.
    Zhu F; Wang K; Li D; Liu Z; Li M; Wang Z; Li X; Lan X; Guan Q
    Rice (N Y); 2022 Dec; 15(1):69. PubMed ID: 36574073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes.
    Wu Q; Liu C; Wang Z; Gao T; Liu Y; Xia Y; Yin R; Qi M
    Environ Pollut; 2022 Mar; 297():118818. PubMed ID: 35016986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress.
    Ye X; Wang H; Cao X; Jin X; Cui F; Bu Y; Liu H; Wu W; Takano T; Liu S
    BMC Genomics; 2019 Jul; 20(1):589. PubMed ID: 31315555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.