These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38772387)

  • 1. A facile single-cell patterning strategy based on harbor-like microwell microfluidics.
    Sun Y; Liu Y; Sun D; Liu K; Li Y; Liu Y; Zhang S
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38772387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation.
    Breukers J; Horta S; Struyfs C; Spasic D; Feys HB; Geukens N; Thevissen K; Cammue BPA; Vanhoorelbeke K; Lammertyn J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2316-2326. PubMed ID: 33411502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centrifugation-Assisted Single-Cell Trapping in a Truncated Cone-Shaped Microwell Array Chip for the Real-Time Observation of Cellular Apoptosis.
    Huang L; Chen Y; Chen Y; Wu H
    Anal Chem; 2015 Dec; 87(24):12169-76. PubMed ID: 26579559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lab-on-chip device for single cell trapping and analysis.
    Shah P; Zhu X; Chen C; Hu Y; Li CZ
    Biomed Microdevices; 2014 Feb; 16(1):35-41. PubMed ID: 23948962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell chemical lysis on microfluidic chips with arrays of microwells.
    Jen CP; Hsiao JH; Maslov NA
    Sensors (Basel); 2012; 12(1):347-58. PubMed ID: 22368473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay.
    Zhang R; Gong HQ; Zeng X; Lou C; Sze C
    Anal Chem; 2013 Feb; 85(3):1484-91. PubMed ID: 23272769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Microfluidic Platform for High-throughput Single-cell Isolation and Culture.
    Lin CH; Chang HC; Hsu CH
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes.
    Nakazawa K; Yoshiura Y; Koga H; Sakai Y
    J Biosci Bioeng; 2013 Nov; 116(5):628-33. PubMed ID: 23735328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A planar dielectrophoresis-based chip for high-throughput cell pairing.
    Wu C; Chen R; Liu Y; Yu Z; Jiang Y; Cheng X
    Lab Chip; 2017 Nov; 17(23):4008-4014. PubMed ID: 29115319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwell array chip-based single-cell analysis.
    Zhang J; Xue J; Luo N; Chen F; Chen B; Zhao Y
    Lab Chip; 2023 Mar; 23(5):1066-1079. PubMed ID: 36625143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays.
    Wang Y; Wu Y; Chen Y; Zhang J; Chen X; Liu P
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments.
    Mao M; He J; Lu Y; Li X; Li T; Zhou W; Li D
    Biofabrication; 2018 Feb; 10(2):025008. PubMed ID: 29350200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Manipulation of Single Magnetic Beads in a Microwell Array on a Digital Microfluidic Chip.
    Decrop D; Brans T; Gijsenbergh P; Lu J; Spasic D; Kokalj T; Beunis F; Goos P; Puers R; Lammertyn J
    Anal Chem; 2016 Sep; 88(17):8596-603. PubMed ID: 27448015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Method for Fabricating Microfluidic Chip Integrated with Microwell Arrays for Cell Trapping.
    Wu H; Ge Z; Yang W; Wang X; Wang X; Yu H
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31731448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SlipO
    Cui Y; Moreira MA; Whalen KE; Barbe L; Shi Q; Koren K; Tenje M; Behrendt L
    Lab Chip; 2024 Oct; 24(20):4786-4797. PubMed ID: 39291395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cost-effective and facile technique for realizing fabric based microfluidic channels using beeswax and PVC stencils.
    P L; Shirsat A; Gardi P; Kore S; Joshi V; Patra R; Maji D
    Anal Methods; 2024 May; 16(21):3372-3384. PubMed ID: 38747244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-seeding microwell chip for the isolation and characterization of single cells.
    Swennenhuis JF; Tibbe AG; Stevens M; Katika MR; van Dalum J; Tong HD; van Rijn CJ; Terstappen LW
    Lab Chip; 2015 Jul; 15(14):3039-46. PubMed ID: 26082273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Microfluidics Assisted Sealing of Individual Magnetic Particles in Femtoliter-Sized Reaction Wells for Single-Molecule Detection.
    Decrop D; Ruiz EP; Kumar PT; Tripodi L; Kokalj T; Lammertyn J
    Methods Mol Biol; 2017; 1547():85-101. PubMed ID: 28044289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.