These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38772388)
1. Antifouling nanoplatform for controlled attachment of Tavangar A; Premnath P; Tan B; Venkatakrishnan K Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38772388 [TBL] [Abstract][Full Text] [Related]
2. Micro- and Nanopatterned Silk Substrates for Antifouling Applications. Tullii G; Donini S; Bossio C; Lodola F; Pasini M; Parisini E; Galeotti F; Antognazza MR ACS Appl Mater Interfaces; 2020 Feb; 12(5):5437-5446. PubMed ID: 31917532 [TBL] [Abstract][Full Text] [Related]
3. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777 [TBL] [Abstract][Full Text] [Related]
4. A novel acid-responsive polymer coating with antibacterial and antifouling properties for the prevention of biofilm-associated infections. Qu L; Li X; Zhou J; Peng X; Zhou P; Zheng H; Jiang Z; Xie Q Colloids Surf B Biointerfaces; 2024 Jul; 239():113939. PubMed ID: 38744077 [TBL] [Abstract][Full Text] [Related]
5. Bacillus subtilis extracellular polymeric substances conditioning layers inhibit Escherichia coli adhesion to silicon surfaces: A potential candidate for interfacial antifouling additives. Wu S; Hou W; Suo X; Guo X; Li H Biointerphases; 2021 Jan; 16(1):011003. PubMed ID: 33706527 [TBL] [Abstract][Full Text] [Related]
6. Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides. Zou Y; Lu K; Lin Y; Wu Y; Wang Y; Li L; Huang C; Zhang Y; Brash JL; Chen H; Yu Q ACS Appl Mater Interfaces; 2021 Sep; 13(38):45191-45200. PubMed ID: 34519474 [TBL] [Abstract][Full Text] [Related]
7. Universal Antifouling and Photothermal Antibacterial Surfaces Based on Multifunctional Metal-Phenolic Networks for Prevention of Biofilm Formation. Wang Y; Zou Y; Wu Y; Wei T; Lu K; Li L; Lin Y; Wu Y; Huang C; Zhang Y; Chen H; Yu Q ACS Appl Mater Interfaces; 2021 Oct; 13(41):48403-48413. PubMed ID: 34610742 [TBL] [Abstract][Full Text] [Related]
8. Preparation and synergistic antifouling effect of self-renewable coatings containing quaternary ammonium-functionalized SiO Wang D; Xu J; Yang J; Zhou S J Colloid Interface Sci; 2020 Mar; 563():261-271. PubMed ID: 31884250 [TBL] [Abstract][Full Text] [Related]
9. DNA-Based Nanofabrication for Antifouling Applications. Hui L; Xu A; Liu H Langmuir; 2019 Sep; 35(38):12543-12549. PubMed ID: 31433657 [TBL] [Abstract][Full Text] [Related]
10. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties. Xin X; Li P; Zhu Y; Shi L; Yuan J; Shen J Langmuir; 2019 Feb; 35(5):1788-1797. PubMed ID: 30089363 [TBL] [Abstract][Full Text] [Related]
11. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus. He Y; Wan X; Xiao K; Lin W; Li J; Li Z; Luo F; Tan H; Li J; Fu Q Biomater Sci; 2019 Dec; 7(12):5369-5382. PubMed ID: 31621697 [TBL] [Abstract][Full Text] [Related]
12. Water- and Acid-Sensitive Cu Li H; Luo S; Zhang L; Zhao Z; Wu M; Li W; Liu FQ ACS Appl Mater Interfaces; 2022 Jan; 14(1):1910-1920. PubMed ID: 34928132 [TBL] [Abstract][Full Text] [Related]
13. Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities. Borjihan Q; Yang J; Song Q; Gao L; Xu M; Gao T; Liu W; Li P; Li Q; Dong A Biomater Sci; 2019 Aug; 7(8):3334-3347. PubMed ID: 31215915 [TBL] [Abstract][Full Text] [Related]
14. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. Wang Y; Shen J; Yuan J J Colloid Interface Sci; 2016 Oct; 480():205-217. PubMed ID: 27442148 [TBL] [Abstract][Full Text] [Related]
15. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. Singh AV; Vyas V; Patil R; Sharma V; Scopelliti PE; Bongiorno G; Podestà A; Lenardi C; Gade WN; Milani P PLoS One; 2011; 6(9):e25029. PubMed ID: 21966403 [TBL] [Abstract][Full Text] [Related]
16. Fighting against biofilm: The antifouling and antimicrobial material. Li C; Gao D; Li C; Cheng G; Zhang L Biointerphases; 2024 Jul; 19(4):. PubMed ID: 39023091 [TBL] [Abstract][Full Text] [Related]
17. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
18. Prevention of Bacterial Colonization on Catheters by a One-Step Coating Process Involving an Antibiofouling Polymer in Water. Keum H; Kim JY; Yu B; Yu SJ; Kim J; Jeon H; Lee DY; Im SG; Jon S ACS Appl Mater Interfaces; 2017 Jun; 9(23):19736-19745. PubMed ID: 28569502 [TBL] [Abstract][Full Text] [Related]
19. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. Gomes LC; Silva LN; Simões M; Melo LF; Mergulhão FJ J Biomed Mater Res A; 2015 Apr; 103(4):1414-23. PubMed ID: 25044887 [TBL] [Abstract][Full Text] [Related]
20. Bioactive Functional Nanolayers of Chitosan-Lysine Surfactant with Single- and Mixed-Protein-Repellent and Antibiofilm Properties for Medical Implants. Ajdnik U; Zemljič LF; Plohl O; Pérez L; Trček J; Bračič M; Mohan T ACS Appl Mater Interfaces; 2021 May; 13(20):23352-23368. PubMed ID: 33998809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]