These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38772463)
1. Chondroitin sulfate-based universal nanoparticle delivers angiogenic inhibitor and paclitaxel to exhibit a combination of chemotherapy and anti-angiogenic therapy. Hou H; Li Y; Tang W; Gao D; Liu Z; Zhao F; Gao X; Ling P; Wang F; Sun F; Tan H Int J Biol Macromol; 2024 Jun; 271(Pt 1):132520. PubMed ID: 38772463 [TBL] [Abstract][Full Text] [Related]
2. Characterization and bioactivity of self-assembled anti-angiogenic chondroitin sulfate-ES2-AF nanoparticle conjugate. Xing L; Sun F; Wang Z; Li Y; Yang Z; Wang F; Zhai G; Tan H Int J Nanomedicine; 2019; 14():2573-2589. PubMed ID: 31040673 [TBL] [Abstract][Full Text] [Related]
3. Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy. Liu YR; Guan YY; Luan X; Lu Q; Wang C; Liu HJ; Gao YG; Yang SC; Dong X; Chen HZ; Fang C Biomaterials; 2015 Feb; 42():161-71. PubMed ID: 25542804 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effect of paclitaxel and rapamycin individual and dual drug-loaded polymeric micelles in the angiogenic cascade. Mishra GP; Nguyen D; Alani AW Mol Pharm; 2013 May; 10(5):2071-8. PubMed ID: 23590802 [TBL] [Abstract][Full Text] [Related]
5. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Zou L; Liu X; Li J; Li W; Zhang L; Fu C; Zhang J; Gu Z Theranostics; 2021; 11(9):4171-4186. PubMed ID: 33754055 [No Abstract] [Full Text] [Related]
6. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Gu G; Hu Q; Feng X; Gao X; Menglin J; Kang T; Jiang D; Song Q; Chen H; Chen J Biomaterials; 2014 Sep; 35(28):8215-26. PubMed ID: 24974009 [TBL] [Abstract][Full Text] [Related]
7. TPGS and chondroitin sulfate dual-modified lipid-albumin nanosystem for targeted delivery of chemotherapeutic agent against multidrug-resistant cancer. Luo K; Xu F; Yao T; Zhu J; Yu H; Wang G; Li J Int J Biol Macromol; 2021 Jul; 183():1270-1282. PubMed ID: 34004196 [TBL] [Abstract][Full Text] [Related]
9. tLyP-1 Peptide Functionalized Human H Chain Ferritin for Targeted Delivery of Paclitaxel. Ma Y; Li R; Dong Y; You C; Huang S; Li X; Wang F; Zhang Y Int J Nanomedicine; 2021; 16():789-802. PubMed ID: 33568906 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional hybrid nanoconstructs facilitate intracellular localization of doxorubicin and genistein to enhance apoptotic and anti-angiogenic efficacy in breast adenocarcinoma. Shukla RP; Dewangan J; Urandur S; Banala VT; Diwedi M; Sharma S; Agrawal S; Rath SK; Trivedi R; Mishra PR Biomater Sci; 2020 Mar; 8(5):1298-1315. PubMed ID: 31903460 [TBL] [Abstract][Full Text] [Related]
11. Lipid/PAA-coated mesoporous silica nanoparticles for dual-pH-responsive codelivery of arsenic trioxide/paclitaxel against breast cancer cells. Zhang BB; Chen XJ; Fan XD; Zhu JJ; Wei YH; Zheng HS; Zheng HY; Wang BH; Piao JG; Li FZ Acta Pharmacol Sin; 2021 May; 42(5):832-842. PubMed ID: 33824461 [TBL] [Abstract][Full Text] [Related]
12. Paclitaxel-loaded polymeric nanoparticles based on α-tocopheryl succinate for the treatment of head and neck squamous cell carcinoma: Riestra-Ayora J; Sánchez-Rodríguez C; Palao-Suay R; Yanes-Díaz J; Martín-Hita A; Aguilar MR; Sanz-Fernández R Drug Deliv; 2021 Dec; 28(1):1376-1388. PubMed ID: 34180747 [TBL] [Abstract][Full Text] [Related]
13. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Zou J; Su S; Chen Z; Liang F; Zeng Y; Cen W; Zhang X; Xia Y; Huang D Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3456-3464. PubMed ID: 31469318 [TBL] [Abstract][Full Text] [Related]
14. Deoxypodophyllotoxin exerts both anti-angiogenic and vascular disrupting effects. Jiang Z; Wu M; Miao J; Duan H; Zhang S; Chen M; Sun L; Wang Y; Zhang X; Zhu X; Zhang L Int J Biochem Cell Biol; 2013 Aug; 45(8):1710-9. PubMed ID: 23702033 [TBL] [Abstract][Full Text] [Related]
15. A CD44-Targeting Programmable Drug Delivery System for Enhancing and Sensitizing Chemotherapy to Drug-Resistant Cancer. Zhang M; Ma Y; Wang Z; Han Z; Gao W; Zhou Q; Gu Y ACS Appl Mater Interfaces; 2019 Feb; 11(6):5851-5861. PubMed ID: 30648841 [TBL] [Abstract][Full Text] [Related]
16. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Yu DH; Lu Q; Xie J; Fang C; Chen HZ Biomaterials; 2010 Mar; 31(8):2278-92. PubMed ID: 20053444 [TBL] [Abstract][Full Text] [Related]
17. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Zhang J; Li J; Shi Z; Yang Y; Xie X; Lee SM; Wang Y; Leong KW; Chen M Acta Biomater; 2017 Aug; 58():349-364. PubMed ID: 28455219 [TBL] [Abstract][Full Text] [Related]
18. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Song Y; Cai H; Yin T; Huo M; Ma P; Zhou J; Lai W Int J Nanomedicine; 2018; 13():1585-1600. PubMed ID: 29588586 [TBL] [Abstract][Full Text] [Related]
19. A lipid-based cell penetrating nano-assembly for RNAi-mediated anti-angiogenic cancer therapy. Majumder P; Bhunia S; Chaudhuri A Chem Commun (Camb); 2018 Feb; 54(12):1489-1492. PubMed ID: 29359766 [TBL] [Abstract][Full Text] [Related]
20. A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. Wang X; Li J; Wang Y; Koenig L; Gjyrezi A; Giannakakou P; Shin EH; Tighiouart M; Chen ZG; Nie S; Shin DM ACS Nano; 2011 Aug; 5(8):6184-94. PubMed ID: 21728341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]