These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 38772565)

  • 41. Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies.
    Yu T; Jiang G; Gao R; Chen G; Ren Y; Liu J; van der Mei HC; Busscher HJ
    Expert Opin Drug Deliv; 2020 Aug; 17(8):1151-1164. PubMed ID: 32510243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria.
    Mba IE; Nweze EI
    Yale J Biol Med; 2022 Dec; 95(4):445-463. PubMed ID: 36568838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems?
    Smith AW
    Adv Drug Deliv Rev; 2005 Jul; 57(10):1539-50. PubMed ID: 15950314
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Potential of Antibiotics and Nanomaterial Combinations as Therapeutic Strategies in the Management of Multidrug-Resistant Infections: A Review.
    Adeniji OO; Nontongana N; Okoh JC; Okoh AI
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial genome engineering and synthetic biology: combating pathogens.
    Krishnamurthy M; Moore RT; Rajamani S; Panchal RG
    BMC Microbiol; 2016 Nov; 16(1):258. PubMed ID: 27814687
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control.
    Liu Y; Shi L; Su L; van der Mei HC; Jutte PC; Ren Y; Busscher HJ
    Chem Soc Rev; 2019 Jan; 48(2):428-446. PubMed ID: 30601473
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of Nanocarrier Systems in Drug Delivery for Overcoming Multi-Drug Resistance in Bacteria.
    Qumsani AT
    Pak J Biol Sci; 2023 Feb; 26(3):131-137. PubMed ID: 37480270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoparticle-peptide conjugates for bacterial detection and neutralization: Potential applications in diagnostics and therapy.
    Gonçalves S; Martins IC; Santos NC
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Nov; 14(6):e1819. PubMed ID: 36416027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.
    Bilal M; Rasheed T; Iqbal HMN; Hu H; Wang W; Zhang X
    Int J Biol Macromol; 2017 Oct; 103():554-574. PubMed ID: 28528940
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomimetic antimicrobial material strategies for combating antibiotic resistant bacteria.
    Chee E; Brown AC
    Biomater Sci; 2020 Feb; 8(4):1089-1100. PubMed ID: 31777863
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advances in Engineered Nano-Biosensors for Bacteria Diagnosis and Multidrug Resistance Inhibition.
    Xia Q; Jiang H; Liu X; Yin L; Wang X
    Biosensors (Basel); 2024 Jan; 14(2):. PubMed ID: 38391978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance.
    Rai M; Ingle AP; Pandit R; Paralikar P; Gupta I; Chaud MV; Dos Santos CA
    Int J Pharm; 2017 Oct; 532(1):139-148. PubMed ID: 28870767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Progress in strategies to combat antimicrobial resistance].
    Yin Y; Chen H; Cao L; Tang L; He F
    Sheng Wu Gong Cheng Xue Bao; 2018 Aug; 34(8):1346-1360. PubMed ID: 30152220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges.
    Hajipour MJ; Saei AA; Walker ED; Conley B; Omidi Y; Lee KB; Mahmoudi M
    Adv Sci (Weinh); 2021 Nov; 8(21):e2100556. PubMed ID: 34558234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities.
    Khorsandi K; Hosseinzadeh R; Sadat Esfahani H; Keyvani-Ghamsari S; Ur Rahman S
    Expert Rev Anti Infect Ther; 2021 Oct; 19(10):1299-1323. PubMed ID: 33755503
    [No Abstract]   [Full Text] [Related]  

  • 56. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria.
    Brar B; Marwaha S; Poonia AK; Koul B; Kajla S; Rajput VD
    Arch Microbiol; 2023 Jan; 205(2):62. PubMed ID: 36629918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antimicrobial resistance, mechanisms and its clinical significance.
    Abushaheen MA; Muzaheed ; Fatani AJ; Alosaimi M; Mansy W; George M; Acharya S; Rathod S; Divakar DD; Jhugroo C; Vellappally S; Khan AA; Shaik J; Jhugroo P
    Dis Mon; 2020 Jun; 66(6):100971. PubMed ID: 32201008
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanomaterials for the Treatment of Bacterial Biofilms.
    Wang LS; Gupta A; Rotello VM
    ACS Infect Dis; 2016 Jan; 2(1):3-4. PubMed ID: 27622944
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phototherapy-based combination strategies for bacterial infection treatment.
    Wei G; Yang G; Wang Y; Jiang H; Fu Y; Yue G; Ju R
    Theranostics; 2020; 10(26):12241-12262. PubMed ID: 33204340
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.